
proach will be thoroughly assessed to determine its
impact on acceptance rates, comparing it to our cur-
rent system to further enhance efficiency and effec-
tiveness in blood supply management.
REFERENCES
Abramova, V. and Bernardino, J. (2013). Nosql databases:
Mongodb vs cassandra. In Proceedings of the inter-
national C* conference on computer science and soft-
ware engineering, pages 14–22.
American Society of Hematology (2020). Blood services
around the globe. ASH Clinical News.
Aubron, C., Flint, A. W., Ozier, Y., and McQuilten, Z.
(2018). Platelet storage duration and its clinical and
transfusion outcomes: a systematic review. Critical
Care, 22:1–13.
Barnes, L. S., Stanley, J., Bloch, E. M., Pagano, M. B., Ipe,
T. S., Eichbaum, Q., Wendel, S., Indrikovs, A., Cai,
W., and Delaney, M. (2022). Status of hospital-based
blood transfusion services in low-income and middle-
income countries: a cross-sectional international sur-
vey. Bmj Open, 12(2):e055017.
BCS (2022). Blood type compatibility: Which blood types
are compatible with each other? Accessed: 2024-10-
21.
Belfarsi, E. A. (2024). Blood donation/transfusion system.
Accessed: 2024-12-06.
Ben Elmir, W., Hemmak, A., and Senouci, B. (2023). Smart
platform for data blood bank management: forecast-
ing demand in blood supply chain using machine
learning. Information, 14(1):31.
Farrington, J. M., Utley, M., Alimam, S., Wong, W. K.,
and Li, K. (2023). Deep reinforcement learning for
managing platelets in a hospital blood bank. Blood,
142:2311.
Jokiaho, J. and community contributors (2023). Faker:
Python Package for Generating Fake Data. Version
15.3.3.
Kralievits, K. E., Raykar, N. P., Greenberg, S. L., and
Meara, J. G. (2015). The global blood supply: a liter-
ature review. The Lancet, 385:S28.
Laermans, J., O, D., Van den Bosch, E., De Buck, E.,
Compernolle, V., Shinar, E., and Vandekerckhove, P.
(2022). Impact of disasters on blood donation rates
and blood safety: A systematic review and meta-
analysis. Vox Sanguinis, 117(6):769–779.
Li, L., Valero, M., Keyser, R., Ukuku, A. M., and Zheng,
D. (2023). Mobile applications for encouraging blood
donation: A systematic review and case study. Digital
Health, 9:20552076231203603.
Perez-Miguel, C., Mendiburu, A., and Miguel-Alonso, J.
(2015). Modeling the availability of cassandra. Jour-
nal of Parallel and Distributed Computing, 86:29–44.
Petersen, J. and Jhala, D. (2023). Blood shortage moni-
toring: Comparison of the supply situation during the
omicron surge and at the tail end of the covid-19 pan-
demic this year. American Journal of Clinical Pathol-
ogy, 160(Supplement 1):S112–S113.
Raykar, N. P., Kralievits, K., Greenberg, S. L., Gillies,
R. D., Roy, N., and Meara, J. G. (2015). The blood
drought in context. The Lancet Global Health, 3:S4–
S5.
Riley, W., Love, K., and McCullough, J. (2021). Public pol-
icy impact of the covid-19 pandemic on blood supply
in the united states. American journal of public health,
111(5):860–866.
Roberts, N., James, S., Delaney, M., and Fitzmaurice, C.
(2019). The global need and availability of blood
products: a modelling study. The Lancet Haematol-
ogy, 6(12):e606–e615.
Sandaruwan, P., Dolapihilla, U., Karunathilaka, D., Wi-
jayaweera, W., Rankothge, W., and Gamage, N.
(2020). Towards an efficient and secure blood bank
management system. In 2020 IEEE 8th R10 Humani-
tarian Technology Conference (R10-HTC), pages 1–6.
IEEE.
Sarhan, M. A., Saleh, K. A., and Bin-Dajem, S. M. (2009).
Distribution of abo blood groups and rhesus factor in
southwest saudi arabia. Saudi Med J, 30(1):116–119.
Shih, H. and Rajendran, S. (2019). Comparison of
time series methods and machine learning algorithms
for forecasting taiwan blood services foundation’s
blood supply. Journal of healthcare engineering,
2019(1):6123745.
Talie, E., Wondiye, H., Kassie, N., and Gutema, H. (2020).
Voluntary blood donation among bahir dar university
students: application of integrated behavioral model,
bahir dar, northwest ethiopia, 2020. Journal of Blood
Medicine, pages 429–437.
Van Denakker, T. A., Al-Riyami, A. Z., Feghali, R., Gam-
mon, R., So-Osman, C., Crowe, E. P., Goel, R., Rai,
H., Tobian, A. A., and Bloch, E. M. (2023). Manag-
ing blood supplies during natural disasters, humanitar-
ian emergencies, and pandemics: lessons learned from
covid-19. Expert review of hematology, 16(7):501–
514.
Wijayathilaka, P., Gamage, P. P., De Silva, K., Athuko-
rala, A., Kahandawaarachchi, K., and Pulasinghe, K.
(2020). Secured, intelligent blood and organ donation
management system-“lifeshare”. In 2020 2nd Inter-
national Conference on Advancements in Computing
(ICAC), volume 1, pages 374–379. IEEE.
World Health Organization (2022). Blood transfusion: facts
in pictures. World Health Organization.
World Health Organization (2023). Blood safety and avail-
ability. Accessed: 2024-10-21.
Yedilkhan, D., Mukasheva, A., Bissengaliyeva, D., and
Suynullayev, Y. (2023). Performance analysis of scal-
ing nosql vs sql: A comparative study of mongodb,
cassandra, and postgresql. In 2023 IEEE International
Conference on Smart Information Systems and Tech-
nologies (SIST), pages 479–483. IEEE.
HEALTHINF 2025 - 18th International Conference on Health Informatics
160