
Table 4: MILPI Vs MILPII using PARAM 3.
Instances MILP I MILP II
Bα% Name Nd Gap TT Nd Gap TT
B100%
25 12 1 1 0,00 0,2 1 0,00 0,2
25 36 3 1 0,00 0,9 1 0,00 0,5
25 120 10 1 0,00 2,7 1 0,00 1,5
100 12 1 1 0,00 1,2 1 0,00 1,2
100 36 3 1 0,00 3,6 1 0,00 1,9
100 120 10 1 0,00 1 0,00 7,6
250 12 1 1 0,00 2,9 1 0,00 1,6
250 36 3 1 0,00 9,9 1 0,00 5,5
500 12 1 1 0,00 6,2 1 0,00 3,3
500 36 3 1 0,00 17,9 1 0,00 11,1
B75%
25 12 1 1 0,00 0,2 1 0,00 0,2
25 36 3 1 0,00 0,9 1 0,00 0,5
25 120 10 1 0,00 3,5 1 0,00 3,2
100 12 1 1 0,00 1,2 1 0,00 0,6
100 36 3 1 0,00 3,1 1 0,00 1,8
250 12 1 1 0,00 2,9 1 0,00 1,6
250 36 3 1 0,00 10,3 1 0,00 5,6
500 12 1 1 0,00 6,2 1 0,00 3,2
500 36 3 1 0,00 20,7 1 0,00 11
B50%
25 12 1 1 0,00 0,2 1 0,00 0,2
25 36 3 1 0,00 0,9 1 0,00 0,5
25 120 10 1 0,00 3,3 1 0,00 1,5
100 12 1 1 0,00 1,2 1 0,00 0,6
100 36 3 1 0,00 3,6 1 0,00 1,9
250 12 1 1 0,00 2,7 1 0,00 1,6
250 36 3 1 0,00 10,1 1 0,00 5,6
500 12 1 1 0,00 6,4 1 0,00 3,2
500 36 3 1 0,00 20,7 1 0,00 10,5
B25%
25 12 1 1 0,00 0,2 1 0,00 0,2
25 36 3 1 0,00 0,9 1 0,00 0,5
25 120 10 1 0,00 3,5 1 0,00 1,5
100 12 1 1 0,00 1,2 1 0,00 0,6
100 36 3 1 0,00 3,6 1 0,00 1,9
250 12 1 1 0,00 2,9 1 0,00 1,6
250 36 3 1 0,00 9,9 1 0,00 5,1
500 12 1 1 0,00 6,3 1 0,00 3,2
500 36 3 1 0,00 20,5 1 0,00 11
The results indicate that our two mixed integer linear
programs exhibit excellent performance, successfully
solving nearly all instances to optimality within just
a few minutes. For this, 94.1% (resp. 92.2%) of in-
stances are solved to optimality by the second (resp.
first) formulation. Furthermore, the second formu-
lation yields better results for 50% of instances that
remain unsolved to optimality by both formulations.
It also successfully solves several instances to opti-
mality that the first formulation does not. Regard-
ing the CPU time computation, the second formula-
tion significantly outperforms the first, achieving so-
lutions in shorter CPU times for 85.62% of instances.
We observe also that 68.62% (resp. 40.10%) of in-
stances are solved to optimality in under 15 seconds
by the second (resp. first) formulation. On the other
hand, the branching tree associated with the Branch-
and-Cut algorithm when using the second formula-
tion shows a reduced number of nodes for 24.18% in-
stances compared to the first formulation. Also, the
second formulation solves 3.27% of instances to op-
timality at the root of the branching tree, while the
first formulation requires more nodes for the same
instances (i.e., branching is required to achieve op-
timal solutions). This clearly shows the advantages
of the second formulation in effectively solving the
problem. Additionally, we observed that the problem
Table 5: MILPI Vs MILPII using PARAM 4.
Instances MILP I MILP II
Bα% Name Nd Gap TT Nd Gap TT
B100%
25 12 1 1 0,00 0,3 1 0,00 0,2
25 36 3 1 0,00 0,5 1 0,00 0,5
25 120 10 1 0,00 1,9 1 0,00 1,8
100 12 1 1 0,00 1,3 1 0,00 0,9
100 36 3 1 0,00 3,2 1 0,00 2,1
250 12 1 1 0,00 2,9 1 0,00 1,7
250 36 3 1 0,00 6,2 1 0,00 5,7
500 12 1 1 0,00 6,2 1 0,00 3,5
500 36 3 1 0,00 12,2 1 0,00 11,7
B75%
25 12 1 1 0,00 0,3 1 0,00 0,2
25 36 3 1 0,00 1 1 0,00 0,5
25 120 10 1 0,00 2,6 1 0,00 2,1
100 12 1 1 0,00 1,3 1 0,00 0,8
100 36 3 1 0,00 2,6 1 0,00 2
250 12 1 1 0,00 3 1 0,00 1,7
250 36 3 1 0,00 6,3 1 0,00 5,8
500 12 1 1 0,00 6,3 1 0,00 3,5
500 36 3 1 0,00 11,8 1 0,00 11,6
B50%
25 12 1 1 0,00 0,3 1 0,00 0,2
25 36 3 1 0,00 0,9 1 0,00 0,5
25 120 10 1 0,00 2,4 1 0,00 1,9
100 12 1 1 0,00 1,1 1 0,00 1
100 36 3 1 0,00 3,4 1 0,00 2
250 12 1 1 0,00 3 1 0,00 1,7
250 36 3 1 0,00 6 1 0,00 5,6
500 12 1 1 0,00 6,3 1 0,00 3,5
500 36 3 1 0,00 11,9 1 0,00 11,6
B25%
25 12 1 1 0,00 0,3 1 0,00 0,2
25 36 3 1 0,00 0,9 1 0,00 0,5
25 120 10 1 0,00 2,4 1 0,00 1,9
100 12 1 1 0,00 1,1 1 0,00 0,9
100 36 3 1 0,00 3,5 1 0,00 2,1
250 12 1 1 0,00 2,9 1 0,00 1,7
250 36 3 1 0,00 5,9 1 0,00 5,6
500 12 1 1 0,00 6,4 1 0,00 3,5
500 36 3 1 0,00 12,4 1 0,00 11,6
becomes increasingly complex to solve to optimality
when the parameter q
z,0
is set to zero, and the in-
equalities in (
˜
4) are relaxed for all zones in Z. This
complexity arises from the combinatorial nature of
the problem, resulting in a significant increase in the
number of potential feasible solutions.
Since nearly all instances have been solved to opti-
mality, we cannot assess the impact of our additional
valid inequalities on the B&C algorithm’s effective-
ness. This limits our evaluation of their influence on
solution times and overall performance. We need to
generate more complex instances that challenge op-
timal solutions with our formulations. Further com-
putational studies are essential to determine how our
valid inequalities can accelerate solution times for in-
stances solved to optimality without them.
7 CONCLUSION
In this paper, we have addressed the strategic deci-
sion problem of a telecommunication operator which
aims at efficiently planning its future investments in
Fiber access of geographical areas that are currently
undeployed. We have introduced two mixed integer
linear programs to model the problem. Additionally,
we presented several classes of valid inequalities for
Models and Algorithms for the Optimization of Multi-Period Fiber Wholesale Investments Strategies
143