
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 580–587.
Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Ex-
plaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572.
Guan, H., Yap, P.-T., Bozoki, A., and Liu, M. (2024). Fed-
erated learning for medical image analysis: A survey.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2017).
Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969.
Hukkel
˚
as, H. and Lindseth, F. (2023). Does image
anonymization impact computer vision training? In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 140–150.
Hukkel
˚
as, H. and Lindseth, F. (2023). Does im-
age anonymization impact computer vision training?
arXiv preprint.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). Ultralyt-
ics YOLO. Available at https://github.com/ultralytics/
ultralytics.
Jocher, G., Stoken, A., Borovec, J., Changyu, L., Hogan, A.,
Diaconu, L., Ingham, F., Poznanski, J., Fang, J., Yu,
L., et al. (2020). ultralytics/yolov5: v3. 1-bug fixes
and performance improvements. Zenodo.
Kaissis, G. A., Makowski, M. R., R
¨
uckert, D., and Braren,
R. F. (2020). Secure, privacy-preserving and feder-
ated machine learning in medical imaging. Nature
Machine Intelligence, 2(6):305–311.
Krasin, I., Duerig, T., Alldrin, N., Ferrari, V., Abu-El-
Haija, S., Kuznetsova, A., Rom, H., Uijlings, J.,
Popov, S., Veit, A., et al. (2017). Openimages: A
public dataset for large-scale multi-label and multi-
class image classification. Dataset available from
https://github. com/openimages, 2(3):18.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017). Focal loss for dense object detection. In
Proceedings of the IEEE international conference on
computer vision, pages 2980–2988.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part I 14,
pages 21–37. Springer.
Liu, Y., Kang, Y., Zou, T., Pu, Y., He, Y., Ye, X., Ouyang,
Y., Zhang, Y.-Q., and Yang, Q. (2024). Vertical fed-
erated learning: Concepts, advances, and challenges.
IEEE Transactions on Knowledge and Data Engineer-
ing.
McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. (2017). Communication-efficient learn-
ing of deep networks from decentralized data. In Ar-
tificial intelligence and statistics, pages 1273–1282.
PMLR.
McMahan, H. B., Moore, E., Ramage, D., Hampson, S.,
and y Arcas, B. A. (2023). Communication-efficient
learning of deep networks from decentralized data.
Memia, A. (2023). Federated learning for edge computing:
Real-time object detection. Master’s thesis, University
of Sk
¨
ovde, Sk
¨
ovde, Sweden. http://hh.divaportal.org/
smash/get/diva2:1785124/FULLTEXT01.pdf.
Mohri, M., Sivek, G., and Suresh, A. T. (2019). Agnostic
federated learning.
Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush,
K., Kone
ˇ
cn
`
y, J., Kumar, S., and McMahan, H. B.
(2020). Adaptive federated optimization. arXiv
preprint arXiv:2003.00295.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information
processing systems, 28.
Ren, Z., Lee, Y. J., and Ryoo, M. S. (2018). Learning to
anonymize faces for privacy preserving action detec-
tion. In Proceedings of the european conference on
computer vision (ECCV), pages 620–636.
Senior, A. (2009). Protecting privacy in video surveillance.
Springer.
Shokri, R. and Shmatikov, V. (2015). Privacy-preserving
deep learning. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’15, page 1310–1321, New York,
NY, USA. Association for Computing Machinery.
Todt, J., Hanisch, S., and Strufe, T. (2022). Fant
ˆ
omas: Un-
derstanding face anonymization reversibility. arXiv
preprint arXiv:2210.10651.
Veltkamp, R. and Tanase, M. (2000). Content-based image
retrieval systems: A survey. researchgate.net.
Wang, L., Zhou, H., Bao, Y., Yan, X., Shen, G., and Kong,
X. (2024). Horizontal federated recommender system:
A survey. ACM Computing Surveys, 56(9):1–42.
Yang, L., Chai, D., Zhang, J., Jin, Y., Wang, L., Liu, H.,
Tian, H., Xu, Q., and Chen, K. (2023). A survey on
vertical federated learning: From a layered perspec-
tive. arXiv preprint arXiv:2304.01829.
Yu, P. and Liu, Y. (2019). Federated object detection: Op-
timizing object detection model with federated learn-
ing. In Proceedings of the 3rd international confer-
ence on vision, image and signal processing, pages
1–6.
Zou, Z., Chen, K., Shi, Z., Guo, Y., and Ye, J. (2023). Ob-
ject detection in 20 years: A survey. Proceedings of
the IEEE, 111(3):257–276.
Secure Visual Data Processing via Federated Learning
541