DATA AVAIBILITY STATEMENT
The PC-GITA and Neurovoz datasets are available
from the authors upon request.
REFERENCES
Badhan, P. K., & Kaur, M. (2024). Early Detection of
Parkinson Disease Throughbiomedical Speech and
Voice Analysis. International Journal on Soft
Computing, Artificial Intelligence and Applications,
13(1), 11–22. https://doi.org/10.5121/ijscai.2024.13102
Bind, S., Tiwari, A. K., & Sahani, A. K. (2015). A Survey of
Machine Learning Based Approaches for Parkinson
Disease Prediction. 6.
Bloem, B. R., Okun, M. S., & Klein, C. (2021). Parkinson’s
disease. The Lancet, 397(10291), 2284–2303.
https://doi.org/10.1016/S0140-6736(21)00218-X
Breiman, L. (2001). Random Forests. Machine Learning,
45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brownlee, J. (2020). Imbalanced Classification with
Python: Better Metrics, Balance Skewed Classes, Cost-
Sensitive Learning. Machine Learning Mastery.
Dorsey, E. R., Elbaz, A., Nichols, E., Abbasi, N., Abd-
Allah, F., Abdelalim, A., Adsuar, J. C., Ansha, M. G.,
Brayne, C., Choi, J.-Y. J., Collado-Mateo, D.,
Dahodwala, N., Do, H. P., Edessa, D., Endres, M.,
Fereshtehnejad, S.-M., Foreman, K. J., Gankpe, F. G.,
Gupta, R., … Murray, C. J. L. (2018). Global, regional,
and national burden of Parkinson’s disease, 1990–2016:
A systematic analysis for the Global Burden of Disease
Study 2016. The Lancet Neurology, 17(11), 939–953.
https://doi.org/10.1016/S1474-4422(18)30295-3
ffmpeg-normalize: Normalize audio via ffmpeg (Version
1.28.3). (n.d.). [Python]. Retrieved August 28, 2024,
from https://github.com/slhck/ffmpeg-normalize
Gullapalli, A. S., & Mittal, V. K. (2022). Early Detection of
Parkinson’s Disease Through Speech Features and
Machine Learning: A Review. In T. Senjyu, P. N.
Mahalle, T. Perumal, & A. Joshi (Eds.), ICT with
Intelligent Applications (pp. 203–212). Springer
Singapore.
Harel, B., Cannizzaro, M., & Snyder, P. J. (2004).
Variability in fundamental frequency during speech in
prodromal and incipient Parkinson’s disease: A
longitudinal case study. Brain and Cognition, 56(1),
24–29. https://doi.org/10.1016/j.bandc.2004.05.002
Ibarra, E. J., Arias-Londoño, J. D., Zañartu, M., & Godino-
Llorente, J. I. (2023). Towards a Corpus (and
Language)-Independent Screening of Parkinson’s
Disease from Voice and Speech through Domain
Adaptation. Bioengineering, 10(11), 1316.
https://doi.org/10.3390/bioengineering10111316
Jumanto, J., Rofik, R., Sugiharti, E., Alamsyah, A.,
Arifudin, R., Prasetiyo, B., & Muslim, M. A. (2024).
Optimizing Support Vector Machine Performance for
Parkinson’s Disease Diagnosis Using GridSearchCV
and PCA-Based Feature Extraction. Journal of
Information Systems Engineering and Business
Intelligence, 10(1), 38–50. https://doi.org/10.
20473/jisebi.10.1.38-50
Klempíř, O., & Krupička, R. (2024). Analyzing Wav2Vec
1.0 Embeddings for Cross-Database Parkinson’s
Disease Detection and Speech Features Extraction.
Sensors, 24(17), Article 17. https://doi.org/10.
3390/s24175520
Mendes-Laureano, J., Gómez-García, J. A., Guerrero-
López, A., Luque-Buzo, E., Arias-Londoño, J. D.,
Grandas-Pérez, F. J., & Godino-Llorente, J. I. (2024).
NeuroVoz: A Castillian Spanish corpus of parkinsonian
speech (arXiv:2403.02371). arXiv. http://arxiv.
org/abs/2403.02371
Mishra, S. P., Warule, P., & Deb, S. (2024). Speech emotion
recognition using MFCC-based entropy feature. Signal,
Image and Video Processing, 18(1), 153–161.
https://doi.org/10.1007/s11760-023-02716-7
Molnar, C. (2020). Interpretable Machine Learning.
Lulu.com.
Murman, D. (2012). Early treatment of Parkinson’s disease:
Opportunities for managed care. The American Journal
of Managed Care, 18, s183-8.
Nayak, S. S., Darji, A. D., & Shah, P. K. (2023).
Identification of Parkinson’s disease from speech signal
using machine learning approach. International
Journal of Speech Technology, 26(4), 981–990.
https://doi.org/10.1007/s10772-023-10068-3
Orozco-Arroyave, J. R., & Noth, E. (n.d.). New Spanish
speech corpus database for the analysis of people
suffering from Parkinson’s disease.
Wang, X., Chen, X., Wang, Q., & Chen, G. (2022). Early
Diagnosis of Parkinson’s Disease with Speech
Pronunciation Features Based on XGBoost Model.
2022 IEEE 2nd International Conference on Software
Engineering and Artificial Intelligence (SEAI), 209–
213. https://doi.org/10.1109/SEAI55746.2022.9832191
Wodzinski, M., Skalski, A., Hemmerling, D., Orozco-
Arroyave, J. R., & Nöth, E. (2019). Deep Learning
Approach to Parkinson’s Disease Detection Using
Voice Recordings and Convolutional Neural Network
Dedicated to Image Classification. 2019 41st Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), 717–720.
https://doi.org/10.1109/EMBC.2019.8856972
Xuan, O. Z. (2023, April 24). Exploring the Short-Time
Fourier Transform: Analyzing Time-Varying
Audio Signals. Medium. https://medium.com/
@ongzhixuan/exploring-the-short-time-fourier-
transform-analyzing-time-varying-audio-signals-
98157d1b9a12.