
Chen, J., Sun, K., Sun, Y., and Li, X. (2021). Signal Qual-
ity Assessment of PPG Signals using STFT Time-
Frequency Spectra and Deep Learning Approaches.
In 2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society
(EMBC), pages 1153–1156, Mexico. IEEE.
Cherif, S., Pastor, D., Nguyen, Q.-T., and L’Her, E. (2016).
Detection of artifacts on photoplethysmography sig-
nals using random distortion testing. In 2016 38th An-
nual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC), pages
6214–6217, Orlando, FL, USA. IEEE.
Chettri, N., Aprile, A., Bonizzoni, E., and Malcovati, P.
(2024). Advances in PPG Sensors Data Acquisition
With Light-to-Digital Converters: A Review. IEEE
Sensors Journal, 24(16):25261–25274.
Couceiro, R., Carvalho, P., Paiva, R. P., Henriques, J., and
Muehlsteff, J. (2014). Detection of motion artifact pat-
terns in photoplethysmographic signals based on time
and period domain analysis. Physiological Measure-
ment, 35(12):2369–2388.
Islam, M. J., Ahmad, S., Haque, F., Reaz, M. B. I., Bhuiyan,
M. A. S., and Islam, M. R. (2022). Application of
Min-Max Normalization on Subject-Invariant EMG
Pattern Recognition. IEEE Transactions on Instru-
mentation and Measurement, 71:1–12.
Li, Q. and Clifford, G. D. (2012). Dynamic time warp-
ing and machine learning for signal quality assess-
ment of pulsatile signals. Physiological Measurement,
33(9):1491–1501.
Liu, S.-H., Liu, H.-C., Chen, W., and Tan, T.-H. (2020).
Evaluating Quality of Photoplethymographic Signal
on Wearable Forehead Pulse Oximeter With Su-
pervised Classification Approaches. IEEE Access,
8:185121–185135. Conference Name: IEEE Access.
Makowski, D., Pham, T., Lau, Z. J., Brammer, J. C.,
Lespinasse, F., Pham, H., Sch
¨
olzel, C., and Chen, S.
H. A. (2021). NeuroKit2: A Python toolbox for neu-
rophysiological signal processing. Behavior Research
Methods, 53(4):1689–1696.
Monte-Moreno, E. (2011). Non-invasive estimate of blood
glucose and blood pressure from a photoplethysmo-
graph by means of machine learning techniques. Arti-
ficial Intelligence in Medicine, 53(2):127–138.
Nemcova, A., Smisek, R., Vargova, E., Mar
ˇ
s
´
anov
´
a, L.,
Vitek, M., and Smital, L. (2021a). Brno University of
Technology Smartphone PPG Database (BUT PPG).
https://physionet.org/content/butppg/1.0.0/.
Nemcova, A., Vargova, E., Smisek, R., Marsanova, L., Smi-
tal, L., and Vitek, M. (2021b). Brno University of
Technology Smartphone PPG Database (BUT PPG):
Annotated Dataset for PPG Quality Assessment and
Heart Rate Estimation. BioMed Research Interna-
tional, 2021(1):3453007.
Park, P., Lee, W., and Cho, S. (2023). An Adaptive Filter
Based Motion Artifact Cancellation Technique Using
Multi-Wavelength PPG for Accurate HR Estimation.
IEEE Transactions on Biomedical Circuits and Sys-
tems, 17(5):1074–1083.
Polak, A. G., Klich, B., Saganowski, S., Prucnal, M. A.,
and Kazienko, P. (2022). Processing Photoplethys-
mograms Recorded by Smartwatches to Improve the
Quality of Derived Pulse Rate Variability. Sensors,
22(18):7047.
Ronca, V., Martinez-Levy, A. C., Vozzi, A., Giorgi, A.,
Aric
`
o, P., Capotorto, R., Borghini, G., Babiloni, F.,
and Di Flumeri, G. (2023). Wearable Technologies for
Electrodermal and Cardiac Activity Measurements: A
Comparison between Fitbit Sense, Empatica E4 and
Shimmer GSR3+. Sensors, 23(13):5847.
Suboh, M. Z., Jaafar, R., Nayan, N. A., Harun, N. H., and
Mohamad, M. S. F. (2022). Analysis on Four Deriva-
tive Waveforms of Photoplethysmogram (PPG) for
Fiducial Point Detection. Frontiers in Public Health,
10:920946.
Sukor, J. A., Redmond, S. J., and Lovell, N. H. (2011). Sig-
nal quality measures for pulse oximetry through wave-
form morphology analysis. Physiological Measure-
ment, 32(3):369–384.
Xie, C., McCullum, L., Johnson, A., Pollard, T.,
Gow, B., and Moody, B. (2023). Waveform
Database Software Package (WFDB) for Python.
https://physionet.org/content/wfdb-python/.
Zanelli, S., Ammi, M., Hallab, M., and El Yacoubi,
M. A. (2022). Diabetes Detection and Manage-
ment through Photoplethysmographic and Electrocar-
diographic Signals Analysis: A Systematic Review.
Sensors, 22(13):4890.
PPG Signal Quality Classification Using STFT and CNN with the BUT PPG Database
927