
emergency evacuation based on cellular automata.
The international journal of high performance com-
puting applications, 31(2):134–151.
Helbing, D., Farkas, I. J., and Vicsek, T. (2000). Freezing
by Heating in a Driven Mesoscopic System. Physical
Review Letters, 84(6):1240–1243.
Helbing, D., Keltsch, J., and Moln
´
ar, P. (1997a). Mod-
elling the evolution of human trail systems. Nature,
388(6637):47–50.
Helbing, D. and Moln
´
ar, P. (1995). Social force model for
pedestrian dynamics. Physical Review E, 51(5):4282–
4286.
Helbing, D., Schweitzer, F., Keltsch, J., and Moln
´
ar, P.
(1997b). Active walker model for the formation of
human and animal trail systems. Physical Review E,
56(3):2527–2539.
Hu, M. and Cai, W. (2020). Evacuation simulation and lay-
out optimization of cruise ship based on cellular au-
tomata. International Journal of Computers and Ap-
plications, 42(1):36–44.
Huan-Huan, T., Li-Yun, D., and Yu, X. (2015). Influence
of the exits’ configuration on evacuation process in
a room without obstacle. Physica A: Statistical Me-
chanics and its Applications, 420:164–178.
Kirchner, A., Kl
¨
upfel, H., Nishinari, K., Schadschneider,
A., and Schreckenberg, M. (2003a). Simulation of
competitive egress behavior: Comparison with air-
craft evacuation data. Physica A: Statistical Mechan-
ics and its Applications, 324(3):689–697.
Kirchner, A., Kl
¨
upfel, H., Nishinari, K., Schadschneider,
A., and Schreckenberg, M. (2004). Discretization
effects and the influence of walking speed in cellu-
lar automata models for pedestrian dynamics. Jour-
nal of Statistical Mechanics: Theory and Experiment,
2004(10):P10011.
Kirchner, A., Nishinari, K., and Schadschneider, A.
(2003b). Friction effects and clogging in a cellular
automaton model for pedestrian dynamics. Physical
Review E, 67(5):056122.
Kirchner, A. and Schadschneider, A. (2002). Simula-
tion of evacuation processes using a bionics-inspired
cellular automaton model for pedestrian dynamics.
Physica A: Statistical Mechanics and its Applications,
312(1):260–276.
Li, Y., Chen, M., Dou, Z., Zheng, X., Cheng, Y., and
Mebarki, A. (2019). A review of cellular automata
models for crowd evacuation. Physica A: Statistical
Mechanics and its Applications, 526:120752.
Liu, S., Yang, L., Fang, T., and Li, J. (2009). Evacuation
from a classroom considering the occupant density
around exits. Physica A: Statistical Mechanics and
its Applications, 388(9):1921–1928.
Ma, J., Lo, S. M., and Song, W. G. (2012). Cellular au-
tomaton modeling approach for optimum ultra high-
rise building evacuation design. Fire Safety Journal,
54:57–66.
Mrowinski, M., Gradowski, T., and Kosinski, R. (2012).
Models of pedestrian evacuation based on cellular au-
tomata. Acta Physica Polonica A, 121(2 B):B95–
B100.
Nagel, K. and Schreckenberg, M. (1992). A cellular
automaton model for freeway traffic. Journal de
Physique I, 2(12):2221–2229.
Nishinari, K., Kirchner, A., Namazi, A., and Schadschnei-
der, A. (2004). Extended Floor Field CA Model for
Evacuation Dynamics. IEICE TRANSACTIONS on In-
formation and Systems, E87-D(3):726–732.
Shi, M., Lee, E. W. M., and Ma, Y. (2018a). A novel
grid-based mesoscopic model for evacuation dynam-
ics. Physica A: Statistical Mechanics and its Applica-
tions, 497:198–210.
Shi, M., Lee, E. W. M., and Ma, Y. (2019). A dynamic
impatience-determined cellular automata model for
evacuation dynamics. Simulation Modelling Practice
and Theory, 94:367–378.
Shi, M., Ming Lee, E. W., and Ma, Y. (2018b). A Newly de-
veloped Mesoscopic Model on Simulating Pedestrian
Flow. Procedia Engineering, 211:614–620.
Strongylis, D., Kouzinopoulos, C. S., Stavropoulos, G., Vo-
tis, K., and Tzovaras, D. (2019). Emergency Evacu-
ation Simulation in Open Air Events Using a Floor
Field Cellular Automata Model. In Moura Oliveira,
P., Novais, P., and Reis, L. P., editors, Progress in Ar-
tificial Intelligence, Lecture Notes in Computer Sci-
ence, pages 642–653, Cham. Springer International
Publishing.
Varas, A., Cornejo, M. D., Mainemer, D., Toledo, B., Ro-
gan, J., Mu
˜
noz, V., and Valdivia, J. A. (2007). Cellular
automaton model for evacuation process with obsta-
cles. Physica A: Statistical Mechanics and its Appli-
cations, 382(2):631–642.
Xiao, Q. and Li, J. (2021). Pedestrian Evacuation Model
considering Dynamic Emotional Update in Direction
Perception Domain. Complexity, 2021:e5530144.
Zheng, Y., Jia, B., Li, X.-G., and Jiang, R. (2017). Evacua-
tion dynamics considering pedestrians’ movement be-
havior change with fire and smoke spreading. Safety
Science, 92:180–189.
Zheng, Y., Jia, B., Li, X.-G., and Zhu, N. (2011). Evacu-
ation dynamics with fire spreading based on cellular
automaton. Physica A: Statistical Mechanics and its
Applications, 390(18):3147–3156.
Zhou, Z., Zhou, Y., Pu, Z., Qi, Y., and Xu, Y. (2019).
An Integrated Cellular Automata Approach for Spa-
tial Evacuation Simulation on Metro Platforms with
Smoke Spreading. Transportation Research Record,
2673(11):851–864.
APPENDIX
A copy of the source code used in the simu-
lations was made available in a remote reposi-
tory at (https://github.com/eduardocassiano-ufu/
Cellular-Automata-with-Surmountable-Obstacles).
Additional instructions on compilation steps, soft-
ware dependencies and test execution are presented
on the repository’s home page.
Cellular Automata-Based Model for Simulation of Collective Pedestrian Dynamics in Indoor Environments with Surmountable Obstacles
471