
nition. 2020 25th International Conference on Pattern
Recognition (ICPR).
Favelle, S. and Palmisano, S. (2018). View specific gen-
eralisation effects in face recognition: Front and yaw
comparison views are better than pitch. PLOS ONE,
13(12).
Gunawan, A. A. and Prasetyo, R. A. (2017). Face recog-
nition performance in facing pose variation. CommIT
(Communication and Information Technology) Jour-
nal, 11(1):1.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR).
Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller,
E. (2007). Labeled faces in the wild: A database for
studying face recognition in unconstrained environ-
ments. Technical Report 07-49, University of Mas-
sachusetts, Amherst.
K. Wickrama Arachchilage, S. P. and Izquierdo, E. (2020).
Deep-learned faces: A survey. EURASIP Journal on
Image and Video Processing, 2020(1).
Khaldi, K., Nguyen, V. D., Mantini, P., and Shah, S. (2024).
Unsupervised person re-identification in aerial im-
agery. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV)
Workshops, pages 260–269.
Klare, B. F., Klein, B., Taborsky, E., Blanton, A., Cheney,
J., Allen, K., Grother, P., Mah, A., Burge, M., and
Jain, A. K. (2015). Pushing the frontiers of uncon-
strained face detection and recognition: Iarpa janus
benchmark a. 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Pereira, F., Burges, C., Bottou, L.,
and Weinberger, K., editors, Advances in Neural In-
formation Processing Systems, volume 25. Curran As-
sociates, Inc.
Li, P., Wu, X., Hu, Y., He, R., and Sun, Z. (2019). M2fpa:
A multi-yaw multi-pitch high-quality database and
benchmark for facial pose analysis. In 2019
IEEE/CVF International Conference on Computer Vi-
sion (ICCV).
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L.
(2017). Sphereface: Deep hypersphere embedding for
face recognition. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Masi, I., Tran, A. T., Hassner, T., Leksut, J. T., and Medioni,
G. (2016). Do we really need to collect millions of
faces for effective face recognition? Computer Vision
– ECCV 2016, page 579–596.
Maze, B., Adams, J., Duncan, J. A., Kalka, N., Miller, T.,
Otto, C., Jain, A. K., Niggel, W. T., Anderson, J., Ch-
eney, J., and et al. (2018). Iarpa janus benchmark - c:
Face dataset and protocol. 2018 International Confer-
ence on Biometrics (ICB).
M
¨
uller, M. K., Heinrichs, A., Tewes, A. H., Sch
¨
afer, A.,
and W
¨
urtz, R. P. (2007). Similarity rank correlation
for face recognition under unenrolled pose. Advances
in Biometrics, page 67–76.
Nguyen, V. D., Khaldi, K., Nguyen, D., Mantini, P.,
and Shah, S. (2024). Contrastive viewpoint-aware
shape learning for long-term person re-identification.
In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pages
1041–1049.
Prince, S. J. and Elder, J. (2006). Tied factor analysis for
face recognition across large pose changes. Proced-
ings of the British Machine Vision Conference 2006.
Qi, D., Tan, W., Yao, Q., and Liu, J. (2023). Yolo5face:
Why reinventing a face detector. Lecture Notes in
Computer Science, page 228–244.
Rajalakshmi, R. and Jeyakumar, M. K. (2012). A review
on classifiers used in face recognition methods under
pose and illumination variation. International Journal
of Computer Science Issues (IJCSI), 9(6):474–485.
Copyright - Copyright International Journal of Com-
puter Science Issues (IJCSI) Nov 2012; Last updated
- 2023-11-20.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014).
Deepface: Closing the gap to human-level perfor-
mance in face verification. 2014 IEEE Conference on
Computer Vision and Pattern Recognition.
Torres Pereira, E., Martins Gomes, H., and de Carvalho,
J. M. (2014). An approach for multi-pose face detec-
tion exploring invariance by training. Lecture Notes in
Computer Science, page 182–191.
Turk, M. and Pentland, A. (1991). Face recognition us-
ing eigenfaces. In Proceedings. 1991 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, pages 586–591.
Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li,
Z., and Liu, W. (2018). Cosface: Large margin cosine
loss for deep face recognition. 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition.
Yi, D., Lei, Z., Liao, S., and Li, S. (2014). Learning face
representation from scratch. ArXiv, abs/1411.7923.
Yin, X. and Liu, X. (2018). Multi-task convolutional neu-
ral network for pose-invariant face recognition. IEEE
Transactions on Image Processing, 27(2):964–975.
Yin, X., Yu, X., Sohn, K., Liu, X., and Chandraker, M.
(2019). Feature transfer learning for face recognition
with under-represented data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).
Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint
face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Processing Let-
ters, 23(10):1499–1503.
Zhang, X. and Gao, Y. (2009). Face recognition across pose:
A review. Pattern Recognition, 42(11):2876–2896.
Minimizing Number of Distinct Poses for Pose-Invariant Face Recognition
455