Evaluation of Artificial Intelligence (AI) Chatbots for
Providing Sexual Health Information: A Consensus
Study Using Clinical Queries.
Li, S., Mou, Y., & Xu, J. (2024). Disclosing Personal
Health Information to Emotional Human Doctors or
Unemotional AI Doctors? Experimental Evidence
Based on Privacy Calculus Theory. International
Journal of Human–Computer Interaction, 1-13.
Li, Y., & Goel, S. (2024). Making it possible for the
auditing of AI: A systematic review of AI audits and AI
auditability. Information Systems Frontiers, 1-31.
Liew, T. W., Tan, S. M., Yoo, N. E., Gan, C. L., & Lee, Y.
Y. (2023). Let's talk about Sex!: AI and relational
factors in the adoption of a chatbot conveying sexual
and reproductive health information. Computers in
Human Behavior Reports, 11, 100323.
Link, E., & Beckmann, S. (2024). AI at everyone’s
fingertips? Identifying the predictors of health
information seeking intentions using AI. Communication
Research Reports, 1-11.
Liu, J., Wang, J., Huang, H., Zhang, R., Yang, M., & Zhao,
T. (2023, October). Improving LLM-Based Health
Information Extraction with In-Context Learning.
In China Health Information Processing
Conference (pp. 49-59). Singapore: Springer Nature
Singapore.
Ma, Y., Achiche, S., Pomey, M. P., Paquette, J., Adjtoutah,
N., Vicente, S., ... & MARVIN chatbots MARVIN
chatbots Patient Expert Committee. (2024). Adapting
and evaluating an AI-Based Chatbot through patient
and stakeholder engagement to provide information for
different health conditions: Master Protocol for an
Adaptive Platform Trial (the MARVIN Chatbots
Study). JMIR Research Protocols, 13(1), e54668.
McMahon, E., Fetters, T., Jive, N. L., & Mpoyi, M. (2023).
Perils and promise providing information on sexual and
reproductive health via the Nurse Nisa WhatsApp
chatbot in the Democratic Republic of the Congo. Sexual
and Reproductive Health Matters, 31(4), 2235796.
Mendel, T., Nov, O., & Wiesenfeld, B. (2024). Advice from
a Doctor or AI? Understanding Willingness to Disclose
Information Through Remote Patient Monitoring to
Receive Health Advice. Proceedings of the ACM on
Human-Computer nteraction, 8(CSCW2), 1-34.
Meskó, B., & Topol, E. J. (2023). The imperative for
regulatory oversight of large language models (or
generative AI) in healthcare. NPJ digital medicine,
6(1), 120.
Mökander, J. (2023). Auditing of AI: Legal, ethical and
technical approaches. Digital Society, 2(3), 49.
Mökander, J., Schuett, J., Kirk, H. R., & Floridi, L. (2023).
Auditing large language models: a three-layered
approach. AI and Ethics, 1-31.
Mulgund, P., Mulgund, B. P., Sharman, R., & Singh, R.
(2021). The implications of the California Consumer
Privacy Act (CCPA) on healthcare organizations:
Lessons learned from early compliance
experiences. Health Policy and Technology, 10(3),
100543.
Nankya, M., Mugisa, A., Usman, Y., Upadhyay, A., &
Chataut, R. (2024). Security and Privacy in E-Health
Systems: A Review of AI and Machine Learning
Techniques. IEEE Access.
Nyarko, A. J. (2024). Exploring Ghanaian Tertiary
Students’ Perceptions Towards AI as a First-Hand
Source of Health Information for Diagnosis and Self-
Medication. Journal of Health Informatics in Africa,
11(1), 64-76.
Ono, G. N., Obi, E. C., Chiaghana, C., & Ezegwu, D.
(2024). Digital Divide and Access: Addressing
Disparities in Artificial Intelligence (Ai) Health
Information for Nigerian Rural Communities. Social
Science Research, 10(3).
Park, J., Singh, V., & Wisniewski, P. (2023). Supporting
youth mental and sexual health information seeking in
the era of artificial intelligence (ai) based
conversational agents: Current landscape and future
directions. Available at SSRN 4601555.
Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., &
Chin, M. H. (2018). Ensuring fairness in machine
learning to advance health equity. Annals of internal
medicine, 169(12), 866-872.
Raddatz, N., Kettinger, W. J., & Coyne, J. (2023). Giving
to Get Well: Patients’ Willingness to Manage
and Share Health Information on AI-Driven
Platforms. Communications of the Association for
Information Systems, 52(1), 1017-1049.
Rezaee, Z., Homayoun, S., Poursoleyman, E., & Rezaee, N.
J. (2023). Giving to Get Well: Patients’ Willingness to
Manage and Share Health Information on AI-Driven
Platforms. Global Finance Journal, 55.
Sakriwattana, K. (2024). Factor affecting intention to use
chatbot for health information. Procedia of
Multidisciplinary Research, 2(7), 5-5.
Shen, S. A., Perez-Heydrich, C. A., Xie, D. X., & Nellis, J.
C. (2024). ChatGPT vs. web search for patient questions:
what does ChatGPT do better?. European Archives of
Oto-Rhino-Laryngology, 281(6), 3219-3225.
Shi, X., Liu, J., Liu, Y., Cheng, Q., & Lu, W. (2024). Know
where to go: Make LLM a relevant, responsible, and
trustworthy searchers. Decision Support Systems,
114354.
Shneiderman, B. (2020). Bridging the gap between ethics
and practice: guidelines for reliable, safe, and
trustworthy human-centered AI systems. ACM
Transactions on Interactive Intelligent Systems
(TiiS), 10(4), 1-31.
Swar, B., Hameed, T., & Reychav, I. (2017). Information
overload, psychological ill-being, and behavioral
intention to continue online healthcare information
search. Computers in human behavior, 70, 416-425.
Ueda, D., Kakinuma, T., Fujita, S., Kamagata, K., Fushimi,
Y., Ito, R., ... & Naganawa, S. (2024). Fairness of
artificial intelligence in healthcare: review and
recommendations. Japanese Journal of
Radiology, 42(1), 3-15.
Vaira, L. A., Lechien, J. R., Abbate, V., Allevi, F., Audino,
G., Beltramini, G. A., ... & De Riu, G. (2024).