
REFERENCES
Arkes, H. R., Dawes, R. M., and Christensen, C. (1986).
Factors influencing the use of a decision rule in a prob-
abilistic task. Organizational Behavior and Human
Decision Processes, 37(1):93–110.
Cecil, J., Lermer, E., Hudecek, M. F. C., Sauer, J., and
Gaube, S. (2024). Explainability does not mitigate the
negative impact of incorrect AI advice in a personnel
selection task. Scientific Reports, 14(1):1–15.
Cheng, L. and Chouldechova, A. (2023). Overcoming algo-
rithm aversion: A comparison between process and
outcome control. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems,
number Article 756 in CHI ’23, pages 1–27.
Dietvorst, B. J., Simmons, J. P., and Massey, C. (2018).
Overcoming algorithm aversion: People will use im-
perfect algorithms if they can (even slightly) modify
them. Management Science, 64(3):1155–1170.
Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007).
G*Power 3: a flexible statistical power analysis pro-
gram for the social, behavioral, and biomedical sci-
ences. Behavior Research Methods, 39(2):175–191.
Filiz, I., Judek, J. R., Lorenz, M., and Spiwoks, M.
(2023). The extent of algorithm aversion in decision-
making situations with varying gravity. PLOS One,
18(2):e0278751.
Gaube, S., Suresh, H., Raue, M., Merritt, A., Berkowitz,
S. J., Lermer, E., Coughlin, J. F., Guttag, J. V., Colak,
E., and Ghassemi, M. (2021). Do as AI say: suscep-
tibility in deployment of clinical decision-aids. NPJ
Digit Medcine, 4(1):31.
Jussupow, E., Spohrer, K., and Heinzl, A. (2022). Radiol-
ogists’ usage of diagnostic AI systems. Business &
Information Systems Engineering, 64(3):293–309.
Klingbeil, A., Gr
¨
utzner, C., and Schreck, P. (2024). Trust
and reliance on AI — an experimental study on the
extent and costs of overreliance on AI. Computers in
Human Behavior, 160:108352.
Lee, J. H., Hong, H., Nam, G., Hwang, E. J., and Park,
C. M. (2023). Effect of human-AI interaction on
detection of malignant lung nodules on chest radio-
graphs. Radiology, 307(5):e222976.
Lew, C. O., Calabrese, E., Chen, J. V., Tang, F., Chaudhari,
G., Lee, A., Faro, J., Juul, S., Mathur, A., McKinstry,
R. C., Wisnowski, J. L., Rauschecker, A., Wu, Y. W.,
and Li, Y. (2024). Artificial intelligence outcome pre-
diction in neonates with encephalopathy (AI-OPiNE).
Radiology: Artificial Intelligence, page e240076.
Logg, J. M., Minson, J. A., and Moore, D. A. (2019). Algo-
rithm appreciation: People prefer algorithmic to hu-
man judgment. Organizational Behavior and Human
Decision Processes, 151:90–103.
Mahmud, H., Islam, A. K. M. N., Ahmed, S. I., and
Smolander, K. (2022). What influences algorithmic
decision-making? a systematic literature review on al-
gorithm aversion. Technological Forecasting and So-
cial Change, 175:121390.
Meyer, A. N. D., Payne, V. L., Meeks, D. W., Rao, R., and
Singh, H. (2013). Physicians’ diagnostic accuracy,
confidence, and resource requests: A vignette study.
JAMA Internal Medicine, 173(21):1952–1958.
Nazaretsky, T., Ariely, M., Cukurova, M., and Alexandron,
G. (2022). Teachers’ trust in AI -powered educational
technology and a professional development program
to improve it. British Journal of Educational Technol-
ogy, 53(4):914–931.
Sukegawa, S., Ono, S., Tanaka, F., Inoue, Y., Hara, T.,
Yoshii, K., Nakano, K., Takabatake, K., Kawai,
H., Katsumitsu, S., Nakai, F., Nakai, Y., Miyazaki,
R., Murakami, S., Nagatsuka, H., and Miyake, M.
(2023). Effectiveness of deep learning classifiers in
histopathological diagnosis of oral squamous cell car-
cinoma by pathologists. Scientific Reports, 13(1):1–9.
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., and Sum-
mers, R. M. (2017). ChestX-Ray8: Hospital-scale
chest X-ray database and benchmarks on weakly-
supervised classification and localization of common
thorax diseases. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 3462–3471. IEEE.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
844