
Guo, X., Liu, Z., Li, J., Gao, J., Hou, B., Dong, C., and
Baker, T. (2021). Verifl: Communication-efficient
and fast verifiable aggregation for federated learning.
IEEE Transactions on Information Forensics and Se-
curity, 16:1736–1751.
Hao, M., Li, H., Xu, G., Chen, H., and Zhang, T. (2021). Ef-
ficient, private and robust Federated Learning. In 37th
Annual Computer Security Applications Conference,
pages 45–60.
Hsu, T.-M. H., Qi, H., and Brown, M. (2019). Mea-
suring the effects of non-identical data distribution
for federated visual classification. arXiv preprint
arXiv:1909.06335.
Kairouz, P., McMahan, H. B., Avent, B., and Bellet, A.
(2021). Advances and Open Problems in Federated
Learning. arXiv preprint arXiv:1912.04977.
Kalapaaking, A. P., Khalil, I., Rahman, M. S., Atiquz-
zaman, M., Yi, X., and Almashor, M. (2023).
Blockchain-Based Federated Learning With Secure
Aggregation in Trusted Execution Environment for
Internet-of-Things. IEEE Trans. on Industrial Infor-
matics, 19(2):1703–1714.
Karimireddy, S. P., He, L., and Jaggi, M. (2020). Byzantine-
robust learning on heterogeneous datasets via bucket-
ing. arXiv preprint arXiv:2006.09365.
Khazbak, Y., Tan, T., and Cao, G. (2020). MLGuard: mit-
igating poisoning attacks in privacy preserving dis-
tributed collaborative learning. In 29th Int. Conf. on
Computer Communications and Networks, pages 1–9.
Liu, J., He, X., Sun, R., Du, X., and Guizani, M. (2021).
Privacy-preserving data sharing scheme with FL via
MPC in financial permissioned blockchain. In IEEE
International Conf. on Communications, pages 1–6.
Lu, Y., Huang, X., Dai, Y., Maharjan, S., and Zhang,
Y. (2019). Blockchain and federated learning for
privacy-preserved data sharing in industrial IoT. IEEE
Trans. on Industrial Informatics, 16(6):4177–4186.
Lycklama, H., Burkhalter, L., Viand, A., K
¨
uchler, N., and
Hithnawi, A. (2023). RoFL: robustness of secure fed-
erated learning. arXiv preprint arXiv:2107.03311.
Mansouri, M.,
¨
Onen, M., Ben Jaballah, W., and Conti, M.
(2023). SoK: secure aggregation based on crypto-
graphic schemes for federated learning. In 23rd Pri-
vacy Enhancing Technologies Symposium.
McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. (2017). Communication-efficient learn-
ing of deep networks from decentralized data. In 20th
Int. Conf. on Artificial Intelligence and Statistics.
Miao, Y., Liu, Z., Li, H., Choo, K.-K. R., and Deng, R. H.
(2022). Privacy-preserving Byzantine-robust feder-
ated learning via blockchain systems. IEEE Trans. on
Information Forensics and Security, 17:2848–2861.
Naseri, M., Hayes, J., and Cristofaro, E. D. (2022). Local
and central differential privacy for robustness and pri-
vacy in federated learning. In 29th Annual Network
and Distributed System Security Symposium.
Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat,
M., Malek, M., and Huba, D. (2022). Federated learn-
ing with buffered asynchronous aggregation. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 3581–3607.
Nguyen, T. D., Rieger, P., Chen, H., Yalame, H., M
¨
ollering,
H., Fereidooni, H., Marchal, S., Miettinen, M., Mirho-
seini, A., Zeitouni, S., Koushanfar, F., Sadeghi,
A.-R., and Schneider, T. (2021). FLGUARD: se-
cure and private federated learning. arXiv preprint
arXiv:2101.02281.
Rahulamathavan, Y., Herath, C., Liu, X., Lambotharan,
S., and Maple, C. (2023). FheFL: fully homo-
morphic encryption friendly privacy-preserving fed-
erated learning with byzantine users. arXiv preprint
arXiv:2306.05112.
Rathee, M., Shen, C., Wagh, S., and Popa, R. (2023).
ELSA: secure aggregation for federated learning with
malicious actors. In IEEE Symposium on Security and
Privacy, pages 1961–1979.
Roy Chowdhury, A., Guo, C., Jha, S., and van der Maaten,
L. (2022). Eiffel: Ensuring integrity for federated
learning. In ACM SIGSAC Conf. on Computer and
Communications Security, pages 2535–2549.
Saad, S. M. S., Radzi, R. Z. R. M., and Othman, S. H.
(2021). Comparative analysis of the blockchain con-
sensus algorithm between proof of stake and delegated
proof of stake. In International Conference on Data
Science and Its Applications, pages 175–180.
Shejwalkar, V., Houmansadr, A., Kairouz, P., and Ramage,
D. (2021). Back to the drawing board: A critical eval-
uation of poisoning attacks on production federated
learning. arXiv preprint arXiv:2108.10241.
Shen, S., Tople, S., and Saxena, P. (2016). Auror: defending
against poisoning attacks in collaborative deep learn-
ing systems. In Annual Computer Security Applica-
tions Conference, page 508–519.
Wang, N., Yang, W., Guan, Z., Du, X., and Guizani, M.
(2021). BPFL: a blockchain based privacy-preserving
federated learning scheme. In IEEE Global Commu-
nications Conference, pages 1–6.
Will, N. C. and Maziero, C. A. (2023). Intel software guard
extensions applications: A survey. ACM Computing
Survey, 55.
Xie, C., Koyejo, O., and Gupta, I. (2020). Fall of empires:
Breaking byzantine-tolerant sgd by inner product ma-
nipulation. In Uncertainty in Artificial Intelligence,
pages 261–270.
Yin, D., Chen, Y., Kannan, R., and Bartlett, P. (2018).
Byzantine-robust distributed learning: Towards opti-
mal statistical rates. In Int. Conf. on Machine Learn-
ing, pages 5650–5659.
Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., and Liu, Y.
(2020). BatchCrypt: Efficient homomorphic encryp-
tion for Cross-Silo federated learning. In USENIX An-
nual Technical Conference, pages 493–506.
Zhang, Z., Wu, L., Ma, C., Li, J., Wang, J., Wang, Q.,
and Yu, S. (2022). LSFL: a lightweight and se-
cure federated learning scheme for edge computing.
IEEE Trans. on Information Forensics and Security,
18:365–379.
Zhu, H. and Ling, Q. (2022). Bridging differential pri-
vacy and byzantine-robustness via model aggregation.
arXiv preprint arXiv:2205.00107.
ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy
70