
ing pLDDT scores from ESMFold as a proxy for flex-
ibility, we demonstrated a 3% improvement in predic-
tion accuracy, achieving an AUC-ROC of 91%. No-
tably, models that explicitly prioritized flexibility out-
performed those that considered flexibility to a lesser
extent, highlighting its significance in enhancing pre-
dictive capabilities. While this represents an initial ef-
fort to integrate flexibility into antibody-antigen mod-
eling, future approaches could utilize experimentally
derived configurations of antibody-antigen complexes
or energy-based models to simulate this dynamic be-
havior more effectively.
A key limitation of the current method is its re-
liance on pre-processed pLDDT scores, which in-
troduces computational overhead. To address this,
we propose incorporating structural distillation tech-
niques to embed flexibility-related insights directly
into sequence-based models, thereby eliminating the
need for structural preprocessing. This adaptation
would streamline workflow and enhance accessibility
for experimental laboratories by enabling rapid high-
throughput screening of antibody libraries.
In practical terms, this methodology holds
promise for applications such as epitope mapping
and evaluating binding interactions. By identifying
promising antibody candidates earlier in the process,
researchers can concentrate experimental resources
on the most viable options, accelerating the develop-
ment of effective antibody therapies.
DATA AVAILABILITY
The data and code can be accessed at the following
link: https://github.com/dasch-lab/fingerprint.
ACKNOWLEDGEMENTS
This work is partially supported by PNRR
ECS00000017 Tuscany Health Ecosystem - Spoke
6 ”Precision medicine & personalized healthcare”,
funded by the European Commission under the
NextGeneration EU program. We thank the Univer-
sity of Pisa Data Center for providing the necessary
hardware resources for this project. We thank Pietro
Li
`
o and St
´
ephane M. Gagn
´
e for their valuable
feedback.
REFERENCES
Alderson, T. R., Priti
ˇ
sanac, I., Kolari
´
c, Moses, A. M.,
and Forman-Kay, J. D. (2023). Systematic identifi-
cation of conditionally folded intrinsically disordered
regions by alphafold2. Proceedings of the National
Academy of Sciences, 120(44):e2304302120.
Bertoline, L. M., Lima, A. N., Krieger, J. E., and Teix-
eira, S. K. (2023). Before and after alphafold2: An
overview of protein structure prediction. Frontiers in
bioinformatics, 3:1120370.
Del Vecchio, A., Deac, A., Li
`
o, P., and Veli
ˇ
ckovi
´
c, P.
(2021). Neural message passing for joint paratope-
epitope prediction. arXiv preprint arXiv:2106.00757.
Dunbar, J., Krawczyk, K., Leem, J., Baker, T., Fuchs,
A., Georges, G., et al. (2014). Sabdab: the struc-
tural antibody database. Nucleic Acids Research,
42(D1):D1140–D1146.
Fischer, E. (1894). Einfluss der configuration auf die
wirkung der enzyme. Berichte der deutschen chemis-
chen Gesellschaft, 27(3):2985–2993.
Gainza, P., Sverrisson, F., Monti, F., Rodola, E., Boscaini,
D., Bronstein, M., and Correia, B. (2020). Deci-
phering interaction fingerprints from protein molec-
ular surfaces using geometric deep learning. Nature
Methods, 17(2):184–192.
Graves, J., Byerly, J., Priego, E., Makkapati, N., Parish,
S. V., Medellin, B., and Berrondo, M. (2020). A re-
view of deep learning methods for antibodies. Anti-
bodies, 9(2):12.
Guo, D., De Sciscio, M. L., Ng, J. C.-F., and Fraternali,
F. (2024). Modelling the assembly and flexibility of
antibody structures. Current Opinion in Structural Bi-
ology, 84:102757.
Joubbi, S., Micheli, A., Milazzo, P., Maccari, G., Ciano, G.,
Cardamone, D., and Medini, D. (2024). Antibody de-
sign using deep learning: from sequence and structure
design to affinity maturation. Briefings in Bioinfor-
matics, 25(4):bbae307.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
ˇ
Z
´
ıdek, A., Potapenko, A., et al. (2021). Highly accu-
rate protein structure prediction with alphafold. Na-
ture, 596(7873):583–589.
Kaplon, H., Crescioli, S., Chenoweth, A., Visweswaraiah,
J., and Reichert, J. M. (2023). Antibodies to watch in
2023. In MAbs, volume 15, page 2153410. Taylor &
Francis.
Kindt, T. J., Goldsby, R. A., Osborne, B. A., and Kuby, J.
(2007). Kuby immunology. Macmillan.
Krapp, L. F., Abriata, L. A., Cort
´
es Rodriguez, F., and
Dal Peraro, M. (2023). Pesto: parameter-free geo-
metric deep learning for accurate prediction of pro-
tein binding interfaces. Nature communications,
14(1):2175.
Larrosa, C., Mora, J., and Cheung, N.-K. (2023). Global
impact of monoclonal antibodies (mabs) in children:
a focus on anti-gd2. Cancers, 15(14):3729.
Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W.,
Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y.,
et al. (2023). Evolutionary-scale prediction of atomic-
level protein structure with a language model. Sci-
ence, 379(6637):1123–1130.
Improving Antibody-Antigen Interaction Prediction Through Flexibility with ESMFold
609