
REFERENCES
Arbelle, A., Cohen, S., and Raviv, T. R. (2022). Dual-
task ConvLSTM-UNet for instance segmentation of
weakly annotated microscopy videos. IEEE Transac-
tions on Medical Imaging, 41(8):1948–1960.
Bouyssoux, A., Fezzani, R., and Olivo-Marin, J.-C. (2022).
Cell instance segmentation using z-stacks in digital
cytology. In 2022 IEEE 19th International Sympo-
sium on Biomedical Imaging (ISBI). IEEE.
Cai, Z. and Vasconcelos, N. (2018). Cascade r-cnn: Delving
into high quality object detection. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 6154–6162.
Chan, T. F. and Vese, L. A. (2001). Active contours with-
out edges. IEEE Transactions on image processing,
10(2):266–277.
Chen, T., Ding, C., Zhu, L., Xu, T., Ji, D., Zang, Y., and
Li, Z. (2024). xlstm-unet can be an effective 2d\&
3d medical image segmentation backbone with vision-
lstm (vil) better than its mamba counterpart. arXiv
preprint arXiv:2407.01530.
Dosovitskiy, A. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Edlund, C., Jackson, T. R., Khalid, N., Bevan, N., Dale,
T., Dengel, A., Ahmed, S., Trygg, J., and Sj
¨
ogren, R.
(2021). LIVECell—a large-scale dataset for label-free
live cell segmentation. Nature Methods, 18(9):1038–
1045.
et al., V. U. (2017). An objective comparison of cell-
tracking algorithms. Nature Methods, 14(12):1141–
1152.
Gonzalez, R. C. (2009). Digital image processing. Pearson
education india.
Jelli, E., Ohmura, T., Netter, N., Abt, M., Jim
´
enez-Siebert,
E., Neuhaus, K., Rode, D. K. H., Nadell, C. D.,
and Drescher, K. (2023). Single-cell segmentation
in bacterial biofilms with an optimized deep learn-
ing method enables tracking of cell lineages and mea-
surements of growth rates. Molecular Microbiology,
119(6):659–676.
Khalid, N., Caroprese, M., Lovell, G., Porto, D. A., Trygg,
J., Dengel, A., and Ahmed, S. (2024). Bounding box
is all you need: Learning to segment cells in 2d micro-
scopic images via box annotations. In Annual Confer-
ence on Medical Image Understanding and Analysis,
pages 314–328. Springer.
Khalid, N., Froes, T. C., Caroprese, M., Lovell, G., Trygg,
J., Dengel, A., and Ahmed, S. (2023). Pace: Point
annotation-based cell segmentation for efficient mi-
croscopic image analysis. In International Confer-
ence on Artificial Neural Networks, pages 545–557.
Springer.
Khalid, N., Schmeisser, F., Koochali, M., Munir, M., Ed-
lund, C., Jackson, T. R., Trygg, J., Sj
¨
ogren, R., Den-
gel, A., and Ahmed, S. (2022). Point2mask: A weakly
supervised approach for cell segmentation using point
annotation. In Medical Image Understanding and
Analysis, pages 139–153. Springer International Pub-
lishing.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. (2021). Swin transformer: Hierar-
chical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 10012–10022.
Scherr, T., L
¨
offler, K., Neumann, O., and Mikut, R.
(2021). On improving an already competitive segmen-
tation algorithm for the cell tracking challenge-lessons
learned. bioRxiv, pages 2021–06.
Schmeisser, F., Dengel, A., and Ahmed, S. (2024a). Point-
based weakly supervised 2.5 d cell segmentation. In
International Conference on Artificial Neural Net-
works, pages 343–358. Springer.
Schmeisser, F., Thomann, C., Petiot, E., Lovell, G., Carop-
rese, M., Dengel, A., and Ahmed, S. (2024b). A line is
all you need: Weak supervision for 2.5 d cell segmen-
tation. In Annual Conference on Medical Image Un-
derstanding and Analysis, pages 402–416. Springer.
Schmidt, U., Weigert, M., Broaddus, C., and Myers, G.
(2018). Cell detection with star-convex polygons.
Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M.
(2020). Cellpose: a generalist algorithm for cellular
segmentation. Nature Methods, 18(1):100–106.
Wagner, R. and Rohr, K. (2022). Efficientcellseg: Ef-
ficient volumetric cell segmentation using context
aware pseudocoloring.
Weigert, M., Schmidt, U., Haase, R., Sugawara, K., and
Myers, G. (2020). Star-convex polyhedra for 3d ob-
ject detection and segmentation in microscopy. In Pro-
ceedings of the IEEE/CVF winter conference on appli-
cations of computer vision, pages 3666–3673.
Wu, L., Chen, A., Salama, P., Dunn, K., and Delp, E.
(2023). Nisnet3d: Three-dimensional nuclear syn-
thesis and instance segmentation for fluorescence mi-
croscopy images.
Yang, R., Song, L., Ge, Y., and Li, X. (2023). Boxsnake:
Polygonal instance segmentation with box supervi-
sion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 766–776.
Zhang, Y., Liao, Q., Ding, L., and Zhang, J. (2022).
Bridging 2d and 3d segmentation networks for
computation-efficient volumetric medical image seg-
mentation: An empirical study of 2.5d solu-
tions. Computerized Medical Imaging and Graphics,
99:102088.
Zhao, Z., Yang, L., Zheng, H., Guldner, I. H., Zhang, S.,
and Chen, D. Z. (2018). Deep Learning Based In-
stance Segmentation in 3D Biomedical Images Using
Weak Annotation, pages 352–360. Springer Interna-
tional Publishing.
Zhou, F. Y., Yapp, C., Shang, Z., Daetwyler, S., Marin, Z.,
Islam, M. T., Nanes, B. A., Jenkins, E., Gihana, G. M.,
Chang, B.-J., et al. (2024). A general algorithm for
consensus 3d cell segmentation from 2d segmented
stacks. bioRxiv, pages 2024–05.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
860