
REFERENCES
Abrishami, S., Turek, M., Choudhury, A. R., and Kumar,
P. (2019). Enhancing profit by predicting stock prices
using deep neural networks. In 2019 IEEE 31st In-
ternational Conference on Tools with Artificial Intel-
ligence (ICTAI), Portland, OR, USA.
Akintola, K. and Oyetunji, O. (2021). Development of an
agent-based framework for stock market trading. IRE
Journals, 4(9).
Auffarth, B. (2023). Generative AI with LangChain, Build
large language model (LLM) apps with Python, Chat-
GPT, and other LLMs. Packt Publishing.
Boroden, C. (2008). Fibonacci Trading: How to Master the
Time and Price Advantage. McGraw Hill.
Chen, H. (2024). Understand the llm agent orchestration.
https://medium.com/scisharp/understand-the-llm-a
gent-orchestration-043ebfaead1f. Accessed: Jun. 1,
2024.
Chi-Min Chan, Weize Chen, Y. S. J. Y. W. X. S. Z. J. F. Z. L.
(2023). Chateval: Towards better llm-based evalua-
tors through multi-agent debate. arXiv:2308.07201v1
[cs.CL].
Chudziak, A. (2023). Predictability of stock returns using
neural networks: Elusive in the long term. Expert Sys-
tems with Applications, 213.
Chudziak, J. A. and Wawer, M. (2024). Elliottagents: A
natural language-driven multi-agent system for stock
market analysis and prediction. In Proceedings of the
38th Pacific Asia Conference on Language, Informa-
tion and Computation, Tokyo, Japan, (in press).
et al., Y. C. (2024). Exploring large language model
based intelligent agents: Definitions, methods, and
prospects. arXiv:2401.03428v1 [cs.AI].
Frost, A. J., Jr., R. R. P., and Collins, C. J. (2001). Elliott
Wave Principle: Key to Market Behavior. Wiley.
Gamil, A. A., El-fouly, R. S., and Darwish, N. M. (2007).
Stock technical analysis using multi agent and fuzzy
logic. In Proceedings of the World Congress on Engi-
neering, WCE 2007, London, UK.
Guo, T. et al. (2024). Large language model based
multi-agents: A survey of progress and challenges.
arXiv:2402.01680v2 [cs.CL].
Hu, B., Zhao, C., Zhang, P., Zhou, Z., Yang, Y., Xu, Z., and
Liu, B. (2024). Enabling intelligent interactions be-
tween an agent and an llm: A reinforcement learning
approach. arXiv:2306.03604v8 [cs.AI].
Jin, M., Tang, H., Zhang, C., Yu, Q., Liu, C., Zhu, S.,
Zhang, Y., and Du, M. (2024). Time series forecasting
with llms: Understanding and enhancing model capa-
bilities. arXiv:2402.10835v2 [cs.CL].
Kabbani, T. and Duman, E. (2022). Deep reinforcement
learning approach for trading automation in the stock
market. IEEE Access, 10.
Lapan, M. (2020). Deep Reinforcement Learning Hands-
On Second Edition. Packt.
Larson, J. and Truitt, S. (2024). Graphrag: Unlocking llm
discovery on narrative private data. https://www.micr
osoft.com/en-us/research/blog/graphrag-unlocking-l
lm-discovery-on-narrative-private-data. Accessed:
May. 10, 2024.
Lewis, P. et al. (2021). Retrieval-augmented generation for
knowledge-intensive nlp tasks. arXiv:2005.11401v4
[cs.CL].
Li, J., Zhang, Q., Yu, Y., Fu, Q., and Ye, D. (2024). More
agents is all you need. arXiv:2402.05120v1 [cs.CL].
Luo, Y., Liu, K., and Davis, D. N. (2002). A multi-agent
decision support system for stock trading. IEEE Net-
work, 16(1).
Lussange, J., Lazarevich, I., Bourgeois-Gironde, S.,
Palminteri, S., and Gutkin, B. (2020). Modelling stock
markets by multi-agent reinforcement learning. Com-
putational Economics. hal-03055070.
Minsky, M. (1988). The Society of Mind. Simon & Schuster.
Murphy, J. J. (1999). Technical Analysis of the Financial
Markets: A Comprehensive Guide to Trading Methods
and Applications. New York Institute of Finance.
Russell, S. and Norvig, P. (1995). Artificial Intelligence: A
Modern Approach. Prentice Hall.
Szydlowski, K. L. and Chudziak, J. A. (2024). Toward pre-
dictive stock trading with hidformer integrated into
reinforcement learning strategy. In Proceedings of
the 36th International Conference on Tools for Arti-
ficial Intelligence (ICTAI 2024), Herndon, VA, USA,
(in press).
Tan, M., Merrill, M. A., Gupta, V., Althoff, T.,
and Hartvigsen, T. (2024). Are language mod-
els actually useful for time series forecasting?
arXiv:2406.16964v1 [cs.LG].
Thomas, R. J. (2024). The rise of large action models, lams:
How ai can understand and execute human intentions?
https://medium.com/version-1/the-rise-of-large-act
ion-models-lams-how-ai-can-understand-and-execu
te-human-intentions-f59c8e78bc09. Accessed: Jun.
20, 2024.
Tirea, M., Tandau, I., and Negru, V. (2012). Stock market
multi-agent recommendation system based on the el-
liott wave principle. In International Conference on
Availability, Reliability, and Security, Prague, Czech
Republic.
Tsay, R. S. (2010). Analysis of Financial Time Series Third
Edition. Wiley.
Wang, L., Zhang, X., Su, H., and Zhu, J. (2024). A compre-
hensive survey of continual learning: Theory, method
and application. arXiv:2302.00487 [cs.LG].
Weng, L. (2023). Llm-powered autonomous agents. lilian-
weng.github.io.
Wittkampf, F. (2024). Next-level agents: Unlocking the
power of dynamic context. https://towardsdatascience
.com/next-level-agents-unlocking-the-power-of-dyn
amic-context-68b8647eef89. Accessed: Jun. 1, 2024.
Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. (2023). React: Synergizing reason-
ing and acting in language models. arXiv:2210.03629
[cs.CL].
Zhao, P., Jin, Z., and Cheng, N. (2023). An in-depth survey
of large language model-based artificial intelligence
agents. arXiv:2309.14365v1 [cs.CL].
Integrating Traditional Technical Analysis with AI: A Multi-Agent LLM-Based Approach to Stock Market Forecasting
111