
among tuberculosis patients in jimma zone, southwest
ethiopia. PLoS One, 18(2):e0281546.
Imagawa, K. and Shiomoto, K. (2024). Evaluation of effec-
tiveness of pre-training method in chest x-ray imag-
ing using vision transformer. Computer Methods in
Biomechanics and Biomedical Engineering: Imaging
& Visualization, 12(1):2345823.
Jaamour, A., Myles, C., Patel, A., Chen, S., McMil-
lan, L., and Harris-Birtill, D. (2023). A divide and
conquer approach to maximise deep learning mam-
mography classification accuracies. PLOS ONE,
18(5):e0280841.
Jaeger, S., Juarez-Espinosa, O. H., Candemir, S., Poostchi,
M., Yang, F., Kim, L., and Thoma, G. (2018). Detect-
ing drug-resistant tuberculosis in chest radiographs.
International Journal of Computer Assisted Radiology
and Surgery, 13:1915–1925.
Jain, A., Bhardwaj, A., Murali, K., and Surani, I. (2024).
A comparative study of cnn, resnet, and vision trans-
formers for multi-classification of chest diseases.
arXiv preprint.
Jonathan, J. and Barakabitze, A. (2023). Ml technologies
for diagnosing and treatment of tuberculosis: a survey.
Health and Technology, 13(1):17–33.
Jonathan, J., Barakabitze, A., Fast, C., and Cox, C. (2024).
Machine learning for prediction of tuberculosis de-
tection: Case study of trained african giant pouched
rats. Online Journal of Public Health Informatics,
16:e50771.
Jumphoo, T., Phapatanaburi, K., Pathonsuwan, W., An-
chuen, P., Uthansakul, M., and Uthansakul, P.
(2024). Exploiting data-efficient image transformer-
based transfer learning for valvular heart diseases de-
tection. IEEE Access.
Karki, M., Kantipudi, K., Yang, F., Yu, H., Wang, Y. X. J.,
Yaniv, Z., and Jaeger, S. (2022). Generalization chal-
lenges in drug-resistant tuberculosis detection from
chest x-rays. Diagnostics, 12(1):188.
Ko, J., Park, S., and Woo, H. G. (2024). Optimization
of vision transformer-based detection of lung diseases
from chest x-ray images. BMC Medical Informatics
and Decision Making, 24(1):191.
Kotei, E. and Thirunavukarasu, R. (2024). Tuberculosis de-
tection from chest x-ray image modalities based on
transformer and convolutional neural network. IEEE
Access.
Kuang, X., Wang, F., Hernandez, K. M., Zhang, Z., and
Grossman, R. L. (2022). Accurate and rapid predic-
tion of tuberculosis drug resistance from genome se-
quence data using traditional machine learning algo-
rithms and cnn. Scientific Reports, 12(1):2427.
Liang, S., Ma, J., Wang, G., Shao, J., Li, J., Deng, H.,
and Li, W. (2022). The application of artificial in-
telligence in the diagnosis and drug resistance predic-
tion of pulmonary tuberculosis. Frontiers in Medicine,
9:935080.
Libiseller-Egger, J., Phelan, J., Campino, S., Mohareb, F.,
and Clark, T. G. (2020). Robust detection of point
mutations involved in multidrug-resistant mycobac-
terium tuberculosis in the presence of co-occurrent
resistance markers. PLOS Computational Biology,
16(12):e1008518.
Lv, X., Li, Y., Cai, B., He, W., Wang, R., Chen, M., Pan, J.,
and Hou, D. (2023). Utility of machine learning and
radiomics based on cavity for predicting the therapeu-
tic response of mdr-tb. Infection and Drug Resistance,
pages 6893–6904.
Meshesha, A., Abeba, G., Getnet, S., and Sreenivas, N.
(2024). Lung tuberculosis detection using chest x-
ray images based on deep learning approach. Interna-
tional Journal of Computer Applications, 975:8887.
Mnyambo, J. J. and Barakabitze, A. (2023). A smarttb:
An integrated digital patient-centric tool for promot-
ing adherence to treatment among people living with
tb in tanzania. East African Journal of Science, Tech-
nology and Innovation, 4.
Naidoo, K. and Perumal, R. (2023). Advances in tubercu-
losis control during the past decade. The Lancet Res-
piratory Medicine, 11(4):311–313.
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence
interval for the AUC of SROC curve and some re-
lated methods using bootstrap for meta-analysis of di-
agnostic accuracy studies. Communications in Statis-
tics: Case Studies, Data Analysis and Applications,
7(3):344–358.
Sachan, R. S. K., Mistry, V., Dholaria, M., Rana, A., Dev-
gon, I., Ali, I., and Karnwal, A. (2023). Overcoming
mycobacterium tuberculosis drug resistance: novel
medications and repositioning strategies. ACS Omega,
8(36):32244–32257.
Scholz, D., Erdur, A. C., Buchner, J. A., Peeken, J. C.,
Rueckert, D., and Wiestler, B. (2024). Imbalance-
aware loss functions improve medical image classifi-
cation. In Medical Imaging with Deep Learning.
Sen, A., Roy, S., Debnath, A., Jha, G., and Ghosh,
R. (2024). De-vit: State-of-the-art vision trans-
former model for early detection of alzheimer’s dis-
ease. In 2024 National Conference on Communica-
tions (NCC), pages 1–6. IEEE.
Sethanan, K., Pitakaso, R., Srichok, T., Khonjun, S., Weer-
ayuth, N., Prasitpuriprecha, C., and Nanthasamroeng,
N. (2023). Computer-aided diagnosis using embedded
ensemble deep learning for multiclass drug-resistant
tuberculosis classification. Frontiers in Medicine, 10.
Silva, B. P. M. D., Almeida, A. S. D., S
´
ergio, M. G.
D. M., Gatto, T. C., Carasek, V. P., and Yamamura,
M. (2023). Drug-resistant tuberculosis and covid-
19: A scoping review on a new threat to antimicro-
bial resistance. Revista Brasileira de Enfermagem,
76:e20220803.
Singh, S., Kumar, M., Kumar, A., Verma, B. K., Abhishek,
K., and Selvarajan, S. (2024). Efficient pneumonia
detection using vision transformers on chest x-rays.
Scientific Reports, 14(1):2487.
Ureta, J. and Shrestha, A. (2021). Identifying drug-resistant
tuberculosis from chest x-ray images using a simple
convolutional neural network. In Journal of Physics:
Conference Series, volume 2071, page 012001. IOP
Publishing.
Vats, S., Sharma, V., Singh, K., Katti, A., Ariffin, M. M.,
Ahmad, M. N., and Salahshour, S. (2024). Incremen-
Enhancing Diagnostic Accuracy of Drug-Resistant Tuberculosis on Chest X-Rays Using Data-Efficient Image Transformers
193