
tion by leveraging the strengths of diverse machine
learning models to significantly enhance prediction
accuracy. The exceptional performance of SVM
within this framework highlights its substantial poten-
tial for future applications in trait prediction.
By integrating a wide range of models, the meta-
ensemble approach not only improves predictive per-
formance but also offers a robust solution for ad-
dressing the complexities of multi-trait genomic se-
lection. This sophisticated methodology promises to
refine breeding strategies and achieve more accurate
trait predictions, advancing precision breeding.
Future research should prioritize integrating en-
vironmental clustering insights and addressing pre-
diction uncertainty to further optimize the meta-
ensemble framework. This involves developing meth-
ods to dynamically adjust predictions based on en-
vironmental conditions and conducting comprehen-
sive uncertainty analyses. Such advancements will
enhance prediction robustness and reliability, leading
to more effective and resilient breeding strategies, ul-
timately boosting agricultural productivity and preci-
sion.
REFERENCES
Ahmed, F. U., Das, A., and Zubair, M. (2024). A ma-
chine learning approach for crop yield and disease
prediction integrating soil nutrition and weather fac-
tors. CoRR, abs/2403.19273.
Breiman, L. (2001). Random forests. Machine learning,
45:5–32.
C
´
eron-Rojas, J. J. and Crossa, J. (2018). Linear selection
indices in modern plant breeding. Springer Nature.
Chandana, C. and Parthasarathy, G. (2022). Efficient ma-
chine learning regression algorithm using na
¨
ıve bayes
classifier for crop yield prediction and optimal utiliza-
tion of fertilizer. Int. J. Perform. Eng., 18(1):47.
Crossa, J., Beyene, Y., Kassa, S., P
´
erez, P., Hickey,
J. M., Chen, C., De Los Campos, G., Burgue
˜
no, J.,
Windhausen, V. S., Buckler, E., et al. (2013). Ge-
nomic prediction in maize breeding populations with
genotyping-by-sequencing. G3: Genes, genomes, ge-
netics, 3(11):1903–1926.
Crossa, J., P
´
erez-Rodr
´
ıguez, P., Cuevas, J., Montesinos-
L
´
opez, O., Jarqu
´
ın, D., De Los Campos, G., Bur-
gue
˜
no, J., Gonz
´
alez-Camacho, J. M., P
´
erez-Elizalde,
S., Beyene, Y., et al. (2017). Genomic selection in
plant breeding: methods, models, and perspectives.
Trends in plant science, 22(11):961–975.
Friedman, J. H. (2001). Greedy function approximation: a
gradient boosting machine. Annals of statistics, pages
1189–1232.
Genuer, R., Poggi, J.-M., Genuer, R., and Poggi, J.-M.
(2020). Random forests. Springer.
Gonz
´
alez-Camacho, J. M., Ornella, L., P
´
erez-Rodr
´
ıguez, P.,
Gianola, D., Dreisigacker, S., and Crossa, J. (2018).
Applications of machine learning methods to genomic
selection in breeding wheat for rust resistance. The
plant genome, 11(2):170104.
Hazel, L., Dickerson, G., and Freeman, A. (1994). The se-
lection index—then, now, and for the future. Journal
of dairy science, 77(10):3236–3251.
Hazel, L. N. (1943). The genetic basis for constructing se-
lection indexes. Genetics, 28(6):476–490.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. nature, 521(7553):436–444.
Montesinos-L
´
opez, O. A., Montesinos-L
´
opez, A.,
Tuberosa, R., Maccaferri, M., Sciara, G., Ammar, K.,
and Crossa, J. (2019). Multi-trait, multi-environment
genomic prediction of durum wheat with genomic
best linear unbiased predictor and deep learning
methods. Frontiers in Plant Science, 10:1311.
Mrode, R. (2014). Linear models for the prediction of ani-
mal breeding values. Cabi.
Natekin, A. and Knoll, A. (2013). Gradient boosting ma-
chines, a tutorial. Frontiers in neurorobotics, 7:21.
Reddy, D. J. and Kumar, M. R. (2021). Crop yield predic-
tion using machine learning algorithm. In 2021 5th In-
ternational Conference on Intelligent Computing and
Control Systems (ICICCS), pages 1466–1470. IEEE.
Sch
¨
olkopf, B. and Smola, A. J. (2002). Learning with ker-
nels: support vector machines, regularization, opti-
mization, and beyond. MIT press.
Smith, H. F. (1936). A discriminant function for plant se-
lection. Annals of eugenics, 7(3):240–250.
Smith, O., Hallauer, A., and Russell, W. (1981). Use of in-
dex selection in recurrent selection programs in maize.
Euphytica, 30:611–618.
Spindel, J., Begum, H., Akdemir, D., Virk, P., Collard, B.,
Redona, E., Atlin, G., Jannink, J.-L., and McCouch,
S. R. (2015). Genomic selection and association map-
ping in rice (oryza sativa): effect of trait genetic archi-
tecture, training population composition, marker num-
ber and statistical model on accuracy of rice genomic
selection in elite, tropical rice breeding lines. PLoS
genetics, 11(2):e1004982.
Westhues, C. C., Mahone, G. S., da Silva, S., Thorwarth,
P., Schmidt, M., Richter, J.-C., Simianer, H., and
Beissinger, T. M. (2021). Prediction of maize pheno-
typic traits with genomic and environmental predic-
tors using gradient boosting frameworks. Frontiers in
plant science, 12:699589.
Meta-Ensemble Learning for Multi-Trait Optimization in Maize Breeding: Combining Gradient Boosting, Random Forests, and Deep
Learning with SVM Integration
883