transcriptomic analysis. By integrating this additional
Pre-Scoring component alongside the standard G-S-
M scoring mechanism, we introduce a dual-layered
evaluation system, promising a more nuanced
analysis process.
These advancements suggest a significant impact
on feature selection, potentially streamlining
biomarker discovery and disease classification
processes. While these findings are preliminary, they
underscore the potential for the Pre-Scoring G-S-M
approach to facilitate more accessible and efficient
transcriptomic research, even in settings with limited
computational resources.
REFERENCES
Bhadra, T., Mallik, S., Hasan, N., & Zhao, Z. (2022).
Comparison of five supervised feature selection
algorithms leading to top features and gene signatures
from multi-omics data in cancer. BMC Bioinformatics,
23(Suppl 3), 153. https://doi.org/10.1186/s12859-022-
04678-y
biomarker identification for NSCLC prediction using multi-
omics data integration. Biomolecules, 12(12), 1839.
https://doi.org/10.3390/biom12121839
Camacho, D. M., Collins, K. M., Powers, R. K., Costello,
J. C., & Collins, J. J. (2018). Next-generation machine
learning for biological networks. Cell, 173(7), 1737-
1750. https://doi.org/10.1016/j.cell.2018.05.015
Clough, E., & Barrett, T. (2016). The Gene Expression
Omnibus database. In Methods in Molecular Biology
(Vol. 1418, pp. 93). Humana Press.
https://doi.org/10.1007/978-1-4939-3578-9_5
He, Z., & Yu, W. (2010). Stable feature selection for
biomarker discovery. Computational Biology and
Chemistry, 34(4), 215-225. https://doi.org/10.1016/
j.compbiolchem.2010.07.002
Jabeer, A., Temiz, M., Bakir-Gungor, B., & Yousef, M.
(2023). miRdisNET: Discovering microRNA
biomarkers that are associated with diseases utilizing
biological knowledge-based machine learning.
Frontiers in Genetics, 13.
Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids
Research, 28(1), 27-30. https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC102409/
Kolde, R., Laur, S., Adler, P., & Vilo, J. (2012). Robust
rank aggregation for gene list integration and meta-
analysis. Bioinformatics, 28(5), 573–580.
https://doi.org/10.1093/bioinformatics/btr709
Kuzudisli, C., Bakir-Gungor, B., Bulut, N., Qaqish, B., &
Yousef, M. (2023). Review of feature selection
approaches based on grouping of features. PeerJ, 11.
https://doi.org/10.7717/peerj.15666
Li, Y., Mansmann, U., Du, S., & Hornung, R. (2022).
Benchmark study of feature selection strategies for
multi-omics data. BMC Bioinformatics, 23, 412.
https://doi.org/10.1186/s12859-022-04962-x
Oh, M., Park, S., Kim, S., & Chae, H. (2021). Machine
learning-based analysis of multi-omics data on the
cloud for investigating gene regulations. Briefings in
Bioinformatics, 22(1), 66-76. https://pubmed.ncbi.nl
m.nih.gov/322270
Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S., &
Smyth, G. K. (n.d.). Robust hyperparameter estimation
protects against hypervariable genes and improves
power to detect differential expression. Nature
Methods. https://www.ncbi.nlm.nih.gov/pmc/articles
Picard, M., Scott-Boyer, P., Bodein, A., Périn, O., & Droit,
A. (2021). Integration strategies of multi-omics data for
machine learning analysis. Computational and
Structural Biotechnology Journal, 19, 3735-3746.
https://doi.org/10.1016/j.csbj.2021.06.030
Piñero, J., Queralt-Rosinach, N., Bravo, À., Deu-Pons, J.,
Bauer-Mehren, A., Baron, M., Sanz, F., & Furlong, L.
I. (2015). DisGeNET: A discovery platform for the
dynamical exploration of human diseases and their
genes. Database: The Journal of Biological Databases
and Curation, 2015. https://doi.org/10.1093/database/
bav028
Piñero, J., Saüch, J., Sanz, F., & Furlong, L. I. (2021). The
DisGeNET cytoscape app: Exploring and visualizing
disease genomics data. Computational and Structural
Biotechnology Journal, 19, 2960-2967. https://doi.org/
10.1016/j.csbj.2021.05.015
Pudjihartono, N., Fadason, T., W., A., & M., J. (2022). A
review of feature selection methods for machine
learning-based disease risk prediction. Frontiers in
Bioinformatics, 2, 927312. https://doi.org/10.3389/
fbinf.2022.927312
Qumsiyeh, E., Showe, L., & Yousef, M. (2022). GediNET
for discovering gene associations across diseases using
knowledge-based machine learning approach. Scientific
Reports, 12(1), 19955. https://doi.org/10.1038/s41598-
022-24421-0
Reel, P. S., Reel, S., Pearson, E., Trucco, E., & Jefferson,
E. (2021). Using machine learning approaches for
multi-omics data analysis: A review. Biotechnology
Advances, 49, 107739. https://doi.org/10.1016/j.bio
techadv.2021.107739
Remeseiro, B., & Bolon-Canedo, V. (2019). A review of
feature selection methods in medical applications.
Computers in Biology and Medicine, 112, 103375.
https://doi.org/10.1016/j.compbiomed.2019.103375
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W.,
Shi, W., & Smyth, G. K. (2015). limma powers
differential expression analyses for RNA-sequencing
and microarray studies. Nucleic Acids Research, 43(7),
e47. https://doi.org/10.1093/nar/gkv007
Smyth, G. K. (2004). Linear models and empirical Bayes
methods for assessing differential expression in
microarray experiments. Statistical Applications in
Genetics and Molecular Biology, 3(1).
https://doi.org/10.2202/1544-6115.1027
Subramanian, I., Verma, S., Kumar, S., Jere, A., &
Anamika, K. (2020). Multi-omics data integration,