Breitbart, E. W., et al. (2020). Improved patient satisfaction
and diagnostic accuracy in skin diseases with a visual
clinical decision support system—a feasibility study
with general practitioners. *PLOS ONE, 15*(7),
e0235410. https://doi.org/10.1371/journal.pone.
0235410.
Bruun, M., et al. (2019). Impact of a clinical decision support
tool on dementia diagnostics in memory clinics: The
PredictND validation study. *Current Alzheimer
Research, 16*(2), 91–101. https://doi.org/10.2174/
1567205016666190103152425.
Cerejeira, J., Lagarto, L., & Mukaetova-Ladinska, E. B.
(2012). Behavioral and psychological symptoms of
dementia. *Front Neurol, 3*, 73.
https://doi.org/10.3389/fneur.2012.00073.
Chen, C. Y., et al. (2024). Ability of machine-learning
based clinical decision support system to reduce alert
fatigue, wrong-drug errors, and alert users about look
alike, sound alike medication. Computer Methods and
Programs in Biomedicine, 243, 107869. https://
doi.org/10.1016/j.cmpb.2023.107869.
Chen, Z., et al. (2023). Harnessing the power of clinical
decision support systems: Challenges and
opportunities. Open Heart, 10(2), e002432. https://
doi.org/10.1136/openhrt-2023-002432.
Dietlein, C., Eichberg, S., Fleiner, T., & Zijlstra, W. (2018).
Feasibility and effects of serious games for people with
dementia: A systematic review and recommendations
for future research. *Gerontechnology, 17*(1), 1–17.
https://doi.org/10.4017/gt.2018.17.1.001.00.
Dendere, R., Slade, C., Burton-Jones, A., Sullivan, C.,
Staib, A., & Janda, M. (2019). Patient portals
facilitating engagement with inpatient electronic
medical records: A systematic review. *Journal of
Medical Internet Research, 21*(4). https://doi.org/10.
2196/12779.
Duplantier, S. C., & Williamson, F. A. (2023). Barriers and
facilitators of health and well-being in informal
caregivers of dementia patients: A qualitative study. Int
J Environ Res Public Health, 20(5), 4328.
https://doi.org/10.3390/ijerph20054328.
Elhaddad, M., & Hamam, S. (2024). AI-driven clinical
decision support systems: An ongoing pursuit of
potential. Cureus, 16(4), e57728. https://doi.org/10.
7759/cureus.57728.
Embi, P. J., Kaufman, S. E., & Payne, P. R. O.
(2009). Biomedical informatics and outcomes
research: Enabling knowledge-driven healthcare.
*Circulation, 120*(23), 2393. https://doi.org/10.1161/
CIRCULATIONAHA.108.795526.
Gencturk, M., et al. (2024). Transforming evidence-based
clinical guidelines into implementable clinical decision
support services: The CAREPATH study for
multimorbidity management. *Frontiers in Medicine,
11*. https://doi.org/10.3389/fmed.2024.1386689.
Gomez-Cabello, C. A., Borna, S., Pressman, S., Haider, S.
A., Haider, C. R., & Forte, A. J. (2024). Artificial-
intelligence-based clinical decision support systems in
primary care: A scoping review of current clinical
implementations. European Journal of Investigation in
Health, Psychology and Education, 14(3), 685–698.
https://doi.org/10.3390/ejihpe14030045.
Hägglund, M., McMillan, B., Whittaker, R., & Blease, C.
(2022). Patient empowerment through online access to
health records. *BMJ, 378*, e071531. https://doi.
org/10.1136/bmj-2022-071531.
Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel,
D., Huang, K., ... & Hussain, A. (2023). Interpreting
black-box models: A review on explainable artificial
intelligence. Cognitive Computation. https://doi.org/
10.1007/s12559-023-10179-8.
Jadczyk, T., Wojakowski, W., Tendera, M., Henry, T. D.,
Egnaczyk, G., & Shreenivas, S. (2021). Artificial
intelligence can improve patient management at the
time of a pandemic: The role of voice technology.
*Journal of Medical Internet Research, 23*(5), e22959.
https://doi.org/10.2196/22959.
Javeed, A., et al. (2023). Machine learning for dementia
prediction: A systematic review and future research
directions. Journal of Medical Systems, 47(1), 17.
https://doi.org/10.1007/s10916-023-01906-7.
Johnson, K. B., et al. (2020). Precision medicine, AI, and
the future of personalized health care. *Clinical and
Translational Science, 14*(1).
Karako, K., Song, P., & Chen, Y. (2023). Recent deep
learning models for dementia as point-of-care testing:
Potential for early detection. Intractable Rare Diseases
Research, 12(1), 1–4. https://doi.org/10.5582/irdr.
2023.01015.
Karimi, S., Jiang, X., Dolin, R. H., Kim, M., & Boxwala,
A. (2020). A secure system for genomics clinical
decision support. *Journal of Biomedical Informatics,
112*, 103602. https://doi.org/10.1016/j.jbi.2020.
103602.
Keen, P. G. W., & Morton, M. S. S. (1978). Decision
support systems: An organizational perspective.
Dssresources.com.
https://dssresources.com/books/contents/keen78.html
Kim, J., & Lim, J. (2021). A deep neural network-based
method for prediction of dementia using big data.
International Journal of Environmental Research and
Public Health, 18(10), 5386. https://doi.org/10.
3390/ijerph18105386.
Kleiman, M. J., Ariko, T., & Galvin, J. E. (2022).
Hierarchical two-stage cost-sensitive clinical decision
support system for screening prodromal Alzheimer’s
disease and related dementias. *Journal of Alzheimer’s
Disease, 91*(2), 895–909. https://doi.org/10.3233/jad-
220891.
Kuperman, G. J., et al. (2007). Medication-related clinical
decision support in computerized provider order entry
systems: A review. *Journal of the American Medical
Informatics Association, 14*(1), 29–40. https://doi.
org/10.1197/jamia.m2170.
Kwan, J. L., et al. (2020). Computerised clinical decision
support systems and absolute improvements in care:
Meta-analysis of controlled clinical trials. BMJ, 370,
m3216. https://doi.org/10.1136/bmj.m3216.
Lin, X., Moxley, J. H., & Czaja, S. J. (2023). Caring for
dementia caregivers: Psychosocial factors related to