regarding the underutilization of GenAI tools and the
significance of behavioral engagement, several areas
for future research remain. One key focus could be
exploring the specific barriers that prevent students
from fully utilizing GenAI for metacognitive learning
strategies, such as self-regulation and reflection.
Identifying whether these barriers stem from a lack of
awareness, trust issues, or insufficient AI literacy
could help inform the development of targeted
interventions.
7.4 Limitations
This study is subject to several limitations. First, the
sample primarily consisted of first-semester students,
which may limit the generalizability of the findings to
more experienced students. Additionally, the study
was conducted exclusively with students from the
local university, further restricting its scope. Lastly,
all participants were enrolled in economics-related
programs, meaning the results may not be fully
applicable to students from other academic
disciplines.
REFERENCES
Adiguzel, T., Kaya, M. H., & Cansu, F. K. (2023).
Revolutionizing education with AI: Exploring the
transformative potential of ChatGPT. Contemporary
Educational Technology, 15(3), ep429.
https://doi.org/10.30935/cedtech/13152
Alshami, A., Elsayed, M., Ali, E., Eltoukhy, A. E. E., &
Zayed, T. (2023). Harnessing the Power of ChatGPT
for Automating Systematic Review Process:
Methodology, Case Study, Limitations, and Future
Directions. Systems, 11(7), 351. https://doi.org/
10.3390/systems11070351
Baidoo-Anu, D., & Owusu Ansah, L. (2023). Education in
the Era of Generative Artificial Intelligence (AI):
Understanding the Potential Benefits of ChatGPT in
Promoting Teaching and Learning. SSRN Electronic
Journal. Advance online publication. https://doi.org/
10.2139/ssrn.4337484
Bandura, A. (1977). Social learning theory. Englewood
Cliffs.
Chen, X., Xie, H., Di Zou, & Hwang, G.‑J. (2020).
Application and theory gaps during the rise of Artificial
Intelligence in Education. 2666-920X, 1, 100002.
https://doi.org/10.1016/j.caeai.2020.100002
Cronbach, L. J. (1951). Coefficient alpha and the internal
structure of tests. Psychometrika, 16(3), 297–334.
https://doi.org/10.1007/BF02310555
Davis, F. D. (1985). A technology acceptance model for
empirically testing new end-user information systems:
Theory and results [, Massachusetts Institute of
Technology]. EndNote Tagged Import Format.
https://dspace.mit.edu/bitstream/handle/1721.1/15192/
14927137-mit.pdf
Hasselhorn, M., & Andju, S. L. (2021, November 24).
Metakognitive Lernstrategien. Dorsch Lexikon der
Psychologie. https://dorsch.hogrefe.com/stichwort/
lernstrategien-metakognitive
Hornberger, M., Bewersdorff, A., & Nerdel, C. (2023).
What do university students know about Artificial
Intelligence? Development and validation of an AI
literacy test. 2666-920X, 5, 100165. https://doi.org/10.
1016/j.caeai.2023.100165
Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., &
Huber, P. (2016). Artificial intelligence and computer
science in education: From kindergarten to university.
In 2016 IEEE Frontiers in Education Conference (FIE)
(pp. 1–9). IEEE. https://doi.org/10.1109/FIE.2016.
7757570
Laupichler, M. C., Aster, A., Schirch, J., & Raupach, T.
(2022). Artificial intelligence literacy in higher and
adult education: A scoping literature review. 2666-
920X, 3, 100101. https://doi.org/10.1016/j.caeai.
2022.100101
Long, D., & Magerko, B. (2020). What is AI Literacy?
Competencies and Design Considerations. In R.
Bernhaupt, F. '. Mueller, D. Verweij, J. Andres, J.
McGrenere, A. Cockburn, I. Avellino, A. Goguey, P.
Bjørn, S. Zhao, B. P. Samson, & R. Kocielnik (Eds.),
Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (pp. 1–16). ACM.
https://doi.org/10.1145/3313831.3376727
Michel-Villarreal, R., Vilalta-Perdomo, E., Salinas-
Navarro, D. E., Thierry-Aguilera, R., & Gerardou, F. S.
(2023). Challenges and Opportunities of Generative AI
for Higher Education as Explained by ChatGPT.
Education Sciences, 13(9), 856. https://doi.org/10.
3390/educsci13090856
Ng, D. T. K., Leung, J. K. L., Chu, K. W. S., & Qiao, M. S.
(2021a). AI Literacy: Definition, Teaching, Evaluation
and Ethical Issues. Proceedings of the Association for
Information Science and Technology, 58(1), 504–509.
https://doi.org/10.1002/pra2.487
Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S.
(2021b). Conceptualizing AI literacy: An exploratory
review. Computers and Education: Artificial
Intelligence, 2, 100041. https://doi.org/10.1016/j.
caeai.2021.100041
Ng, D. T. K., Wu, W., Leung, J. K. L., Chiu, T. K. F., &
Chu, S. K. W. (2024). Design and validation of the AI
literacy questionnaire: The affective, behavioural,
cognitive and ethical approach. British Journal of
Educational Technology, 55(3), 1082–1104.
https://doi.org/10.1111/bjet.13411
Nückles, M. (2021, November 24). Kognitive
Lernstrategien. Dorsch Lexikon der Psychologie.
https://dorsch.hogrefe.com/stichwort/lernstrategien-
kognitive
Schneider, R. U. (2023, November 23). Chat-GPT erobert
die Universitäten: Darf der Computer die Seminararbeit
schreiben? NZZ. https://www.nzz.ch/gesellschaft/ki-