
tional measured samples directly contribute to a more
accurate BRDF representation. This characteristic
distinguishes our method from previous approaches
and results in a more robust representation. Conse-
quently, our approach exhibits enhanced reliability.
ACKNOWLEDGEMENTS
This project has received funding from the European
Union’s Hori- zon 2020 research and innovation pro-
gram under Marie Skłodowska- Curie grant agree-
ment No956585. We thank the anonymous reviewers
for their feedback.
REFERENCES
Andersson, P., Nilsson, J., Akenine-M
¨
oller, T., Oskarsson,
M.,
˚
Astr
¨
om, K., and Fairchild, M. D. (2020).
F
LIP:
A Difference Evaluator for Alternating Images. Pro-
ceedings of the ACM on Computer Graphics and In-
teractive Techniques, 3(2):15:1–15:23.
Bai, Y., Wu, S., Zeng, Z., Wang, B., and Yan, L.-Q. (2023).
Bsdf importance baking: A lightweight neural solu-
tion to importance sampling general parametric bsdfs.
Cook, R. L. and Torrance, K. E. (1982). A reflectance model
for computer graphics. ACM Transactions on Graph-
ics (ToG), 1(1):7–24.
Deschaintre, V., Aittala, M., Durand, F., Drettakis, G., and
Bousseau, A. (2019). Flexible svbrdf capture with a
multi-image deep network.
Dupuy, J. (2015). Photorealistic Surface Rendering with
Microfacet Theory. PhD thesis.
Dupuy, J. and Jakob, W. (2018). An adaptive parameteri-
zation for efficient material acquisition and rendering.
ACM Transactions on Graphics, 37(6):1–14.
Foo, S. C. et al. (1997). A gonioreflectometer for measur-
ing the bidirectional reflectance of material for use in
illumination computation. PhD thesis, Citeseer.
Gao, D., Li, X., Dong, Y., Peers, P., Xu, K., and Tong,
X. (2019). Deep inverse rendering for high-resolution
SVBRDF estimation from an arbitrary number of im-
ages. ACM Transactions on Graphics, 38(4):1–15.
Jakob, W., Speierer, S., Roussel, N., Nimier-David, M.,
Vicini, D., Zeltner, T., Nicolet, B., Crespo, M.,
Leroy, V., and Zhang, Z. (2022). Mitsuba 3 renderer.
https://mitsuba-renderer.org.
Kavoosighafi, B., Hajisharif, S., Miandji, E., Baravdish, G.,
Cao, W., and Unger, J. (2024). Deep svbrdf acqui-
sition and modelling: A survey. Computer Graphics
Forum, 43.
Liu, C., Fischer, M., and Ritschel, T. (2023). Learning to
learn and sample brdfs. Computer Graphics Forum
(Proceedings of Eurographics), 42(2):201–211.
Matusik, W., Pfister, H., Brand, M., and McMillan, L.
(2003). A data-driven reflectance model. ACM Trans.
Graph., 22(3):759–769.
Miandji, E., Tongbuasirilai, T., Hajisharif, S., Kavoosighafi,
B., and Unger, J. (2024). Frost-brdf: A fast and robust
optimal sampling technique for brdf acquisition. IEEE
transactions on visualization and computer graphics,
PP.
M
¨
uller, T., Mcwilliams, B., Rousselle, F., Gross, M., and
Nov
´
ak, J. (2019). Neural Importance Sampling. ACM
Transactions on Graphics, 38(5):1–19.
Nicodemus, F. E. (1965). Directional reflectance and emis-
sivity of an opaque surface. Applied optics, 4(7):767–
775.
Nielsen, J. B., Jensen, H. W., and Ramamoorthi, R. (2015).
On optimal, minimal BRDF sampling for reflectance
acquisition. ACM Transactions on Graphics, 34(6):1–
11.
Phong, B. T. (1975). Illumination for computer generated
pictures. Commun. ACM, 18(6):311–317.
Rusinkiewicz, S. M. (1998). A new change of variables
for efficient brdf representation. In Rendering Tech-
niques’ 98: Proceedings of the Eurographics Work-
shop in Vienna, Austria, June 29—July 1, 1998 9,
pages 11–22. Springer.
Walter, B. (2005). Notes on the ward brdf.
https://www.graphics.cornell.edu/ bjw/wardnotes.pdf.
Zeng, Z., Deschaintre, V., Georgiev, I., Hold-Geoffroy,
Y., Hu, Y., Luan, F., Yan, L.-Q., and Ha
ˇ
san, M.
(2024). Rgb↔x: Image decomposition and synthesis
using material- and lighting-aware diffusion models.
In ACM SIGGRAPH 2024 Conference Papers, SIG-
GRAPH ’24, New York, NY, USA. Association for
Computing Machinery.
Zhang, X., Srinivasan, P. P., Deng, B., Debevec, P., Free-
man, W. T., and Barron, J. T. (2021). NeRFactor: neu-
ral factorization of shape and reflectance under an un-
known illumination. ACM Transactions on Graphics,
40(6):1–18.
Deep Image-Based Adaptive BRDF Measure
299