ACKNOWLEDGEMENTS
This work is supported by National Council on
Scientific and Technical Research (CONICET) under
a PhD Fellowship (RESOL-2021-154-APN-DIR#CO
NICET) and the National University of the NorthEast
(SCyT - UNNE) under grant 21F005. It is part of the
research conducted under the Computer Science
Doctorate Program at UNNE, UNaM and UTN.
REFERENCES
Albers, D., Correll, M., & Gleicher, M. (2014). Task-Driven
Evaluation of Aggregation in Time Series Visualization.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI Conference, 2014,
551–560. https://doi.org/10.1145/2556288.2557200
Amri, S., Ltifi, H., & Ben Ayed, M. (2015). Towards an
intelligent evaluation method of medical data
visualizations. 2015 15th International Conference on
Intelligent Systems Design and Applications (ISDA),
2016-June, 673–678. https://doi.org/10.1109/ISDA.201
5.7489198
Andrews, K. (2006). Evaluating information visualisations.
Proceedings of the 2006 AVI Workshop on BEyond Time
and Errors Novel Evaluation Methods for Information
Visualization - BELIV ’06, 1. https://doi.org/10.1145/11
68149.1168151
ATLAS.ti | The #1 Software for Qualitative Data Analysis -
ATLAS.ti. (n.d.). Retrieved October 23, 2024, from
https://atlasti.com/
B.A Kitchenham. (2007). Guidelines for performing
systematic literature reviews in software engineering. In
Technical report, Ver. 2.3 EBSE Technical Report. EBSE
(Vol. 1).
Brolcháin, N., Porwol, L., Ojo, A., Wagner, T., Lopez, E. T.,
& Karstens, E. (2017). Extending open data platforms
with storytelling features. ACM International
Conference Proceeding Series, Part F1282, 48–53.
https://doi.org/10.1145/3085228.3085283
Carpendale, S. (2008). Evaluating Information Visualizations.
In Information Visualization: Vol. 4950 LNCS (Issue
January 1970, pp. 19–45). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-70956-5_2
Chen, Q., Cao, S., Wang, J., & Cao, N. (2022). How Does
Automation Shape the Process of Narrative
Visualization: A Survey on Tools. 1–20. http://arxiv.org/
abs/2206.12118
Corbin, J., & Strauss, A. (2012). Basics of Qualitative
Research (3rd ed.): Techniques and Procedures for
Developing Grounded Theory. Basics of Qualitative
Research (3rd Ed.): Techniques and Procedures for
Developing Grounded Theory. https://doi.org/10.4135/
9781452230153
Dermeval, D., Vilela, J., Bittencourt, I. I., Castro, J., Isotani,
S., Brito, P., & Silva, A. (2016a). Applications of
ontologies in requirements engineering. Requirements
Engineering, 21(4), 405–437. https://doi.org/10.1007/S0
0766-015-0222-6
Dermeval, D., Vilela, J., Bittencourt, I. I., Castro, J., Isotani,
S., Brito, P., & Silva, A. (2016b). Applications of
ontologies in requirements engineering: a systematic
review of the literature. Requirements Engineering,
21(4), 405–437. https://doi.org/10.1007/S00766-015-
0222-6/TABLES/15
Elmqvist, N., & Yi, J. S. (2015). Patterns for visualization
evaluation. Information Visualization, 14(3), 250–269.
https://doi.org/10.1177/1473871613513228
Errey, N., Liang, J., Leong, T. W., & Zowghi, D. (2024).
Evaluating narrative visualization: a survey of
practitioners. International Journal of Data Science and
Analytics, 18(1), 19–34. https://doi.org/10.1007/s41060-
023-00394-9
Figueiras, A. (2014). How to tell stories using visualization.
Proceedings of the International Conference on
Information Visualisation, 18–26. https://doi.org/10.11
09/IV.2014.78
Forsell, C., & Johansson, J. (2010). An heuristic set for
evaluation in information visualization. Proceedings of
the International Conference on Advanced Visual
Interfaces - AVI ’10, 199. https://doi.org/10.1145/18429
93.1843029
Garousi, V., & Felderer, M. (2017). Experience-based
guidelines for effective and efficient data extraction in
systematic reviews in software engineering. ACM Inter-
national Conference Proceeding Series, Part F1286,
170–179. https://doi.org/10.1145/3084226.3084238
Hao, S., Wang, Z., Bach, B., & Pschetz, L. (2024). Design
Paterns for Data-Driven News Articles. Conference on
Human Factors in Computing Systems - Proceedings.
https://doi.org/10.1145/3613904.3641916
Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., & Moller,
T. (2013). A systematic review on the practice of
evaluating visualization. IEEE Transactions on
Visualization and Computer Graphics, 19(12), 2818–
2827. https://doi.org/10.1109/TVCG.2013.126
Kitchenham, B., & Charters, S. M. (2007). Guidelines for
performing Systematic Literature Reviews in Software
Engineering.
Lam, H., Bertini, E., Isenberg, P., Plaisant, C., & Carpendale,
S. (2012). Empirical Studies in Information
Visualization: Seven Scenarios. IEEE Transactions on
Visualization and Computer Graphics, 18(9), 1520–
1536. https://doi.org/10.1109/TVCG.2011.279
Meuschke, M., Garrison, L. A., Smit, N. N., Bach, B.,
Mittenentzwei, S., Weiß, V., Bruckner, S., Lawonn, K.,
& Preim, B. (2022). Narrative medical visualization to
communicate disease data. Computers and Graphics
(Pergamon), 107, 144–157. https://doi.org/10.1016/
j.cag.2022.07.017
Micallef, L., Palmas, G., Oulasvirta, A., & Weinkauf, T.
(2017). Towards Perceptual Optimization of the Visual
Design of Scatterplots. IEEE Transactions on
Visualization and Computer Graphics, 23(6), 1588–
1599. https://doi.org/10.1109/TVCG.2017.2674978
Pérez, J., Díaz, J., Garcia-Martin, J., & Tabuenca, B. (2020).
Systematic literature reviews in software engineering—
enhancement of the study selection process using
Cohen’s Kappa statistic. Journal of Systems and
Software, 168, 110657. https://doi.org/10.1016/J.JSS.20
20.110657