Man, and Cybernetics: Systems, 54(1), pp. 578–587.
https://doi.org/10.1109/tsmc.2023.3311446
Chindamo, D., Gadola, M., and Marchesin, F. P. (2017).
Reproduction of real-world road profiles on a four-
poster rig for indoor vehicle chassis and suspension
durability testing. Advances in Mechanical
Engineering/Advances in Mechanical Engineering,
9(8), 168781401772600. https://doi.org/10.1177/16878
14017726004
Deepak, K., Frikha, M. A., Benômar, Y., Baghdadi, M. E.,
and Hegazy, O. (2023). In-Wheel motor drive systems
for electric vehicles: state of the art, challenges, and
future trends. Energies, 16(7), 3121.
https://doi.org/10.3390/en16073121
Fathy, H. K., Filipi, Z. S., Hagena, J., and Stein, J. L.
(2006). Review of hardware-in-the-loop simulation and
its prospects in the automotive area. SPIE Proceedings.
https://doi.org/10.1117/12.667794
Gießler, Martin, Gauterin, F., & and Unrau, H. J. (2022).
New inner drum test bench for dynamic tests of
PLT and truck tires. KITopen-ID:1000156885.
https://doi.org/10.5445/IR/1000156885
Gräbe, R. P., Kat, C., Van Staden, P. J., and& Els, P. S.
(2020). Difference thresholds for a vehicle on a 4-poster
test rig. Applied Ergonomics/Applied Ergonomics, 87,
103115. https://doi.org/10.1016/j.apergo.2020.103115
Guo, L., Ge, P., and& Sun, D. (2019). Torque Distribution
Algorithm for stability control of electric vehicle driven
by four In-Wheel motors under emergency conditions.
IEEE Access, 7, 104737–104748. https://doi.org/10.11
09/access.2019.2931505
Gysen, B., Paulides, J., Janssen, J., and& Lomonova, E.
(2010). Active electromagnetic suspension system for
improved vehicle dynamics. IEEE Transactions on
Vehicular Technology, 59(3), 1156–1163.
https://doi.org/10.1109/tvt.2009.2038706
Heydrich, M., Ivanov, V., Bertagna, A., Rossi, A.,
Mazzoni, M., and& Bücner, F. (2022). Hardware-in-
the-Loop testing of a hybrid Brake-by-Wire system for
electric vehicles. SAE International Journal of Vehicle
Dynamics, Stability, and NVH, 6(4).
https://doi.org/10.4271/10-06-04-0031
Hori, Y. (2004). Future Vehicle Driven by Electricity and
Control—Research on Four-Wheel-Motored ""UOT
Electric March II."." IEEE Transactions on Industrial
Electronics, 51(5), 954–962.
https://doi.org/10.1109/tie.2004.834944
Ivanov, V., Augsburg, K., Bernad, C., Dhaens, M., Dutré,
M., Gramstat, S., Magnin, P., Schreiber, V., Skrt, U.,
and& Van Kelecom, N. (2019). Connected and shared
X-in-the-Loop technologies for electric vehicle design.
World Electric Vehicle Journal, 10(4), 83.
https://doi.org/10.3390/wevj10040083
Jneid, M. S., and& Harth, P. (2024). Radial Flux In-Wheel-
Motors for vehicle electrification. Cognitive Sustaina-
bility, 3(3). https://doi.org/10.55343/cogsust.105
Kojis, P., Danilevičius, A., Šabanovič, E., and& Skrickij,
V. (2022). The second generation of electric vehicles:
Integrated Corner Solutions. In Lecture notes in
intelligent transportation and infrastructure (pp. 87–
100). https://doi.org/10.1007/978-3-030-94774-3_9
Lauwerys, C., Swevers, J., and& Sas, P. (2005). Robust
linear control of an active suspension on a quarter car
test-rig. Control Engineering Practice, 13(5), 577–586.
https://doi.org/10.1016/j.conengprac.2004.04.018
Li, I., and& Lee, L. (2019). Design and development of an
active suspension system using Pneumatic-Muscle
actuator and intelligent control. Applied Sciences,
9(20), 4453. https://doi.org/10.3390/app9204453
Maher, D., and& Young, P. (2010). An insight into linear
quarter car model accuracy. Vehicle System
Dynamics/Vehicle System Dynamics, 49(3), 463–480.
https://doi.org/10.1080/00423111003631946
Mihalič, F., Truntič, M., and& Hren, A. (2022). Hardware-
in-the-Loop Simulations: A Historical Overview of
Engineering Challenges. Electronics, 11(15), 2462.
https://doi.org/10.3390/electronics11152462
Nguyen, B.-M., and& Trovão, J. P. (2024). Advancing
Automotive Electronics: The Role of Collaborative
Education and Project Development [Automotive
Electronics]. IEEE Vehicular Technology Magazine,
19(3), pp. 116–127. https://doi.org/10.1109/mvt.2024.3
414068
Omar, M., El-Kassaby, M., and& Abdelghaffar, W. (2017).
A universal suspension test rig for electrohydraulic
active and passive automotive suspension system.
Alexandria Engineering Journal /Alexandria
Engineering Journal, 56(4), 359–370. https://doi.org/
10.1016/j.aej.2017.01.024
Šabanovič, E., Kojis, P., Šukevičius, Š., Shyrokau, B.,
Ivanov, V., Dhaens, M., and& Skrickij, V. (2021).
Feasibility of a neural Network-Based virtual sensor for
vehicle unsprung mass relative velocity estimation.
Sensors, 21(21), 7139. https://doi.org/10.3390/s2121
7139
Skrickij, V., Kojis, P., Šabanovič, E., Shyrokau, B., and&
Ivanov, V. (2024). Review of Integrated chassis control
techniques for Automated ground vehicles. Sensors,
24(2), 600. https://doi.org/10.3390/s24020600
Society of Automotive Engineers International. (2012).
Laboratory Testing Machines for Measuring the Steady
State Force And Moment Properties of Passenger Car
Tires (SAE J 1106). https://doi.org/10.4271/J1106_201
208
Stolte, T., Loba, M., Nee, M., Wu, L., and& Maurer, M.
(2023). Toward Fault-Tolerant Vehicle Motion Control
for Over-Actuated Automated Vehicles: A Non-Llinear
Model Predictive Approach. IEEE Access, 11, 10499–
10519. https://doi.org/10.1109/access.2023.3239518
Yu, M., Arana, C., Evangelou, S. A., and& Dini, D. (2019).
Quarter-Car Experimental Study for Series Active
Variable Geometry Suspension. IEEE Transactions on
Control Systems Technology
, 27(2), 743–759.
https://doi.org/10.1109/tcst.2017.2772912