leveraging both automated systems and human
insights, we can refine the Sockpuppet detection
process and achieve even better results.
REFERENCES
Ashford, J. R., Turner, L. D., Whitaker, R. M., Preece, A.,
& Felmlee, D. (2020, December). Assessing temporal
and spatial features in detecting disruptive users on
Reddit. In 2020 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining
(ASONAM) (pp. 892-896). IEEE.
Baamer, R., Boicu. M. (2024). “Sockpuppet accounts
detection on Wikipedia: Research report.” Under
review
Bastos, M. T., Puschmann, C., & Travitzki, R. (2013, May).
“Tweeting across hashtags: overlapping users and the
importance of language, topics, and politics,” In
Proceedings of the 24th ACM conference on hypertext
and social media (pp. 164-168).
Bhatia, T., Manaskasemsak, B., & Rungsawang, A. (2023,
March). “Detecting fake news sources on Twitter using
Deep Neural Network,” In 2023 11th International
Conference on Information and Education Technology
(ICIET) (pp. 508-512). IEEE.
Bhopale, J., Bhise, R., Mane, A., & Talele, K. (2021,
September). “A Review-and-Reviewer based approach
for Fake Review Detection,” In 2021 Fourth
International Conference on Electrical, Computer and
Communication Technologies (ICECCT) (pp. 1-6).
IEEE.
Boididou, C., Papadopoulos, S., Apostolidis, L., &
Kompatsiaris, Y. (2017, June). “Learning to detect
misleading content on twitter,” In Proceedings of the
2017 ACM on international conference on multimedia
retrieval (pp. 278-286).
Borkar, B. S., Patil, D. R., Markad, A. V., & Sharma, M.
(2022, November). “Real or fake identity deception of
social media accounts using Recurrent Neural
Network,” In 2022 International Conference on Fourth
Industrial Revolution Based Technology and Practices
(ICFIRTP) (pp. 80-84). IEEE.
Boshmaf, Y., Logothetis, D., Siganos, G., Lería, J.,
Lorenzo, J., Ripeanu, M., & Beznosov, K. (2015,
February). “Integro: Leveraging victim prediction for
robust fake account detection in OSNs,” In NDSS (Vol.
15, pp. 8-11).
He, B., Ahamad, M., & Kumar, S. (2021, August). Petgen:
Personalized text generation attack on deep sequence
embedding-based classification models. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining (pp. 575-584).
Kuruvilla, A. M., & Varghese, S. (2015, March). A
detection system to counter identity deception in social
media applications. In 2015 International Conference
on Circuits, Power and Computing Technologies
[ICCPCT-2015] (pp. 1-5). IEEE.
Liu, Wei & Xie, Chencheng & Zong, Shijie. (2023). A
rumor source identification method based on node
embeddings and community detection in social
networks. 104-109. 10.1109/CBD63341.2023.00027.
Nguyen, N. L., Wang, M. H., & Dow, C. R. (2021).
“Learning to recognize sockpuppets in online political
discussions,” IEEE Systems Journal, 16(2), 1873-
1884.
Sakib, M., & Spezzano. F,. (2022). “Automated Detection
of Sockpuppet accounts in Wikipedia," 2022
IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM),
Istanbul, Turkey, 2022, pp. 155-158, doi:
10.1109/ASONAM55673.2022.10068604.
Sakib, M. N. (2024) Wikipedia Sockpuppetry, GitHub,
Available at: https://github.com/Mostofa-Najmus-
Sakib/Wikipedia-Sockpuppetry/tree/main/data
Accessed on: April 14, 2023
Solorio, T., Hasan, R., & Mizan, M. (2013, June). “A case
study of sockpuppet detection in wikipedia,” In
Proceedings of the Workshop on Language Analysis in
Social Media (pp. 59-68).
Solorio, T., Hasan, R., & Mizan, M. (2014). Sockpuppet
detection in wikipedia: A corpus of real-world
deceptive writing for linking identities. arXiv preprint
arXiv:1310.6772.
Tsikerdekis, M., & Zeadally, S. (2014). Multiple account
identity deception detection in social media using
nonverbal behavior. IEEE Transactions on Information
Forensics and Security, 9(8), 1311-1321.
Scikit Learn (2014). Voting Classifier. API Reference.
Accessed on May 26, 2024 https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.
VotingClassifier.html
Wang, Ruei-Yuan & Chen, Hung-Hsuan. (2023). Detecting
Inactive Cyberwarriors from Online Forums.
10.48550/arXiv.2308.15491.
Yamak, Z., Saunier, J., & Vercouter, L. (2016). “Detection
of multiple identity manipulation in collaborative
projects,” In Proceedings of the 25th International
Conference Companion on World Wide Web (pp. 955-
960).
Yamak, Z., Saunier, J., & Vercouter, L. (2018).
SocksCatch: Automatic detection and grouping of
sockpuppets in social media. Knowledge-Based
Systems, 149, 124-142
Yu, H., Hu, F., Liu, L., Li, Z., Li, X., & Lin, Z. (2021).
Sockpuppet detection in social network based on
adaptive multi-source features. In Modern Industrial
IoT, big data and supply chain: proceedings of the
IIoTBDSC 2020 (pp. 187-194). Springer Singapore.
APPENDIX
Link: https://drive.google.com/file/d/1uDDc-eld14-Opok9
2RbYq0qyqrQ8msfG/view