
REFERENCES
Banabilah, S., Aloqaily, M., Alsayed, E., Malik, N., and
Jararweh, Y. (2022). Federated learning review:
Fundamentals, enabling technologies, and future ap-
plications. Information processing & management,
59(6):103061.
Banerjee, S., De, B., Sinha, P., Cherusseri, J., and Kar, K. K.
(2020). Applications of supercapacitors. Handbook of
Nanocomposite Supercapacitor Materials I: Charac-
teristics, pages 341–350.
Cao, Y., Ji, R., Huang, X., Lei, G., Shao, X., and You, I.
(2022). Empirical mode decomposition-empowered
network traffic anomaly detection for secure multipath
tcp communications. Mobile Networks and Applica-
tions, 27(6):2254–2263.
Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017). Ho-
momorphic encryption for arithmetic of approximate
numbers. In Advances in Cryptology–ASIACRYPT
2017: 23rd International Conference on the Theory
and Applications of Cryptology and Information Se-
curity, Hong Kong, China, December 3-7, 2017, Pro-
ceedings, Part I 23, pages 409–437. Springer.
Fontenla-Romero, O., Guijarro-Berdi
˜
nas, B., Hern
´
andez-
Pereira, E., and P
´
erez-S
´
anchez, B. (2023). Fedheonn:
Federated and homomorphically encrypted learning
method for one-layer neural networks. Future Gen-
eration Computer Systems, 149:200–211.
Gheytanzadeh, M., Baghban, A., Habibzadeh, S., Mohad-
despour, A., and Abida, O. (2021). Insights into the
estimation of capacitance for carbon-based superca-
pacitors. RSC advances, 11(10):5479–5486.
Guo, F., Lv, H., Wu, X., Yuan, X., Liu, L., Ye, J., Wang,
T., Fu, L., and Wu, Y. (2023). A machine learning
method for prediction of remaining useful life of su-
percapacitors with multi-stage modification. Journal
of Energy Storage, 73:109160.
Hoerl, A. and Kennard, R. (1988). Ridge regression, in
‘encyclopedia of statistical sciences’, vol. 8.
Huang, Y., Gupta, S., Song, Z., Li, K., and Arora, S. (2021).
Evaluating gradient inversion attacks and defenses in
federated learning. Advances in Neural Information
Processing Systems, 34:7232–7241.
Iwen, M. A. and Ong, B. (2016). A distributed and incre-
mental svd algorithm for agglomerative data analysis
on large networks. SIAM Journal on Matrix Analysis
and Applications, 37(4):1699–1718.
Ji, S., Tan, Y., Saravirta, T., Yang, Z., Liu, Y., Vasankari,
L., Pan, S., Long, G., and Walid, A. (2024). Emerg-
ing trends in federated learning: From model fusion
to federated x learning. International Journal of Ma-
chine Learning and Cybernetics, pages 1–22.
Laadjal, K. and Marques Cardoso, A. J. (2021). A review
of supercapacitors modeling, soh, and soe estimation
methods: Issues and challenges. International Journal
of Energy Research, 45(13):18424–18440.
Li, L., Fan, Y., Tse, M., and Lin, K.-Y. (2020). A review
of applications in federated learning. Computers &
Industrial Engineering, 149:106854.
Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu,
X., and He, B. (2021). A survey on federated learn-
ing systems: Vision, hype and reality for data privacy
and protection. IEEE Transactions on Knowledge and
Data Engineering, 35(4):3347–3366.
Mothukuri, V., Parizi, R. M., Pouriyeh, S., Huang, Y., De-
hghantanha, A., and Srivastava, G. (2021). A survey
on security and privacy of federated learning. Future
Generation Computer Systems, 115:619–640.
Panhwar, I. H., Ahmed, K., Seyedmahmoudian, M., Sto-
jcevski, A., Horan, B., Mekhilef, S., Aslam, A., and
Asghar, M. (2020). Mitigating power fluctuations for
energy storage in wind energy conversion system us-
ing supercapacitors. IEEE Access, 8:189747–189760.
Qu, Y., Uddin, M. P., Gan, C., Xiang, Y., Gao, L., and Year-
wood, J. (2022). Blockchain-enabled federated learn-
ing: A survey. ACM Computing Surveys, 55(4):1–35.
Ren, J., Lin, X., Liu, J., Han, T., Wang, Z., Zhang, H., and
Li, J. (2020). Engineering early prediction of superca-
pacitors’ cycle life using neural networks. Materials
Today Energy, 18:100537.
Rocabert, J., Capo-Misut, R., Mu
˜
noz-Aguilar, R. S., Can-
dela, J. I., and Rodriguez, P. (2018). Control of en-
ergy storage system integrating electrochemical bat-
teries and supercapacitors for grid-connected applica-
tions. IEEE Transactions on Industry Applications,
55(2):1853–1862.
Sawant, V., Deshmukh, R., and Awati, C. (2023). Machine
learning techniques for prediction of capacitance and
remaining useful life of supercapacitors: A compre-
hensive review. Journal of Energy Chemistry, 77:438–
451.
Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 58(1):267–288.
Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi,
F., Jin, S., Quek, T. Q., and Poor, H. V. (2020). Fed-
erated learning with differential privacy: Algorithms
and performance analysis. IEEE transactions on in-
formation forensics and security, 15:3454–3469.
Zhang, J., Gu, M., and Chen, X. (2023). Supercapacitors
for renewable energy applications: A review. Micro
and Nano Engineering, page 100229.
Zhang, S. and Pan, N. (2015). Supercapacitors per-
formance evaluation. Advanced Energy Materials,
5(6):1401401.
Zhao, J., Gao, Y., and Burke, A. F. (2017). Performance
testing of supercapacitors: Important issues and un-
certainties. Journal of Power Sources, 363:327–340.
Zou, H. and Hastie, T. (2005). Regularization and vari-
able selection via the elastic net. Journal of the Royal
Statistical Society Series B: Statistical Methodology,
67(2):301–320.
Zou, Z., Cao, J., Cao, B., and Chen, W. (2015). Evaluation
strategy of regenerative braking energy for superca-
pacitor vehicle. ISA transactions, 55:234–240.
Predicting the State of Health of Supercapacitors Using a Federated Learning Model with Homomorphic Encryption
891