
Operativo Regionale (POR) Puglia 2014-2020-Axis
I-Specific Objective 1a-Action 1.1 (Research and
Development)-Project Title: CyberSecurity and
Security Operation Center (SOC) Product Suite
by BV TECH S.p.A., under Grant CUP/CIG
B93G18000040007.
REFERENCES
Adlakha, V., BehnamGhader, P., Lu, X. H., Meade, N., and
Reddy, S. (2024). Evaluating correctness and faith-
fulness of instruction-following models for question
answering. Transactions of the Association for Com-
putational Linguistics, 12:681–699.
Alicea, M. and Alsmadi, I. (2021). Misconfiguration in fire-
walls and network access controls: Literature review.
Future Internet, 13(11).
Anwar, R. W., Abdullah, T., and Pastore, F. (2021). Fire-
wall best practices for securing smart healthcare envi-
ronment: A review. Applied Sciences, 11(19).
Chen, Y., Li, R., Zhao, Z., Peng, C., Wu, J., Hossain, E., and
Zhang, H. (2024). Netgpt: An ai-native network archi-
tecture for provisioning beyond personalized genera-
tive services. IEEE Network.
Coscia, A., Dentamaro, V., Galantucci, S., Maci, A., and
Pirlo, G. (2023). An innovative two-stage algorithm
to optimize firewall rule ordering. Computers & Secu-
rity, 134:103423.
Coscia, A., Dentamaro, V., Galantucci, S., Maci, A., and
Pirlo, G. (2024). Progesi: A proxy grammar to en-
hance web application firewall for sql injection pre-
vention. IEEE Access, 12:107689–107703.
Coscia, A., Maci, A., and Tamma, N. (2025). Frog: A
firewall rule order generator for faster packet filtering.
Computer Networks, 257:110962.
Es, S., James, J., Espinosa Anke, L., and Schockaert, S.
(2024). RAGAs: Automated evaluation of retrieval
augmented generation. In 18th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics: System Demonstrations, pages 150–158.
Ferrag, M. A., Ndhlovu, M., Tihanyi, N., Cordeiro,
L. C., et al. (2024). Revolutionizing cyber threat
detection with large language models: A privacy-
preserving bert-based lightweight model for iot/iiot
devices. IEEE Access, 12:23733–23750.
Huang, Y., Du, H., Zhang, X., Niyato, D., Kang, J., Xiong,
Z., Wang, S., and Huang, T. (2024). Large language
models for networking: Applications, enabling tech-
niques, and challenges. IEEE Network.
Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E.,
Bang, Y. J., Madotto, A., and Fung, P. (2023). Survey
of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., et al. (2020). Retrieval-augmented generation for
knowledge-intensive nlp tasks. In Advances in Neu-
ral Information Processing Systems, volume 33, pages
9459–9474.
Loevenich, J. F., Adler, E., Mercier, R., Velazquez, A., and
Lopes, R. R. F. (2024). Design of an autonomous cy-
ber defence agent using hybrid ai models. In 2024
International Conference on Military Communication
and Information Systems (ICMCIS), pages 1–10.
Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen,
T. H., Sainz, O., Agirre, E., Heintz, I., and Roth, D.
(2023). Recent advances in natural language process-
ing via large pre-trained language models: A survey.
ACM Computing Surveys, 56(2).
Muennighoff, N., Tazi, N., Magne, L., and Reimers, N.
(2023). MTEB: Massive text embedding benchmark.
In 17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 2014–
2037.
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C., Mishkin, P., et al. (2022). Training language mod-
els to follow instructions with human feedback. In
Advances in Neural Information Processing Systems,
volume 35, pages 27730–27744.
Paduraru, C., Patilea, C., and Stefanescu, A. (2024). Cy-
berguardian: An interactive assistant for cybersecu-
rity specialists using large language models. In 19th
International Conference on Software Technologies -
Volume 1: ICSOFT, pages 442–449.
Ross, S. I., Martinez, F., Houde, S., Muller, M., and Weisz,
J. D. (2023). The programmer’s assistant: Conversa-
tional interaction with a large language model for soft-
ware development. In 28th International Conference
on Intelligent User Interfaces, page 491–514.
Sarker, I. H. (2024). Generative AI and Large Language
Modeling in Cybersecurity, pages 79–99. Springer
Nature Switzerland.
Tihanyi, N., Ferrag, M. A., Jain, R., Bisztray, T., and Deb-
bah, M. (2024). Cybermetric: A benchmark dataset
based on retrieval-augmented generation for evaluat-
ing llms in cybersecurity knowledge. In 2024 IEEE
International Conference on Cyber Security and Re-
silience (CSR), pages 296–302.
Wang, C., Scazzariello, M., Farshin, A., Ferlin, S., Kosti
´
c,
D., and Chiesa, M. (2024). Netconfeval: Can llms
facilitate network configuration? Proceedings of the
ACM Networking, 2(CoNEXT2).
Wu, D., Wang, X., Qiao, Y., Wang, Z., Jiang, J., Cui, S.,
and Wang, F. (2024). Netllm: Adapting large lan-
guage models for networking. In ACM SIGCOMM
2024 Conference, page 661–678.
Xu, M., Niyato, D., Kang, J., Xiong, Z., Mao, S., Han, Z.,
Kim, D. I., and Letaief, K. B. (2024). When large
language model agents meet 6g networks: Perception,
grounding, and alignment. IEEE Wireless Communi-
cations, pages 1–9.
Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., et al. (2023). Judging llm-as-a-judge with
mt-bench and chatbot arena. In Advances in Neu-
ral Information Processing Systems, volume 36, pages
46595–46623.
Zientara, D. (2018). Learn pfSense 2.4: Get up and running
with Pfsense and all the core concepts to build firewall
and routing solutions. Packt Publishing.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
496