
chitecture for image segmentation. IEEE transac-
tions on pattern analysis and machine intelligence,
39(12):2481–2495.
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and
Adam, H. (2018). Encoder-decoder with atrous sepa-
rable convolution for semantic image segmentation. In
Proceedings of the European conference on computer
vision (ECCV), pages 801–818.
Chen, W., Zhang, T., and Zhao, X. (2021a). Semantic seg-
mentation using generative adversarial network. In
2021 40th Chinese Control Conference (CCC), pages
8492–8495.
Chen, X., Yuan, Y., Zeng, G., and Wang, J. (2021b). Semi-
supervised semantic segmentation with cross pseudo
supervision. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 2613–2622.
Devries, T. and Taylor, G. W. (2017). Improved regular-
ization of convolutional neural networks with cutout.
ArXiv, abs/1708.04552.
Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B.,
Rudnicka, A. R., Owen, C. G., and Barman, S. A.
(2012). Chase db1: Retinal vessel reference dataset.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. Advances
in neural information processing systems, 27.
Guo, J., Si, Z., Wang, Y., Liu, Q., Fan, M., Lou, J.-G.,
Yang, Z., and Liu, T. (2021). Chase: A large-scale and
pragmatic chinese dataset for cross-database context-
dependent text-to-sql. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, pages 2316–
2331, Online. Association for Computational Linguis-
tics.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Jeong, J., Lee, S., Kim, J., and Kwak, N. (2019).
Consistency-based semi-supervised learning for ob-
ject detection. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alch
´
e-Buc, F., Fox, E., and Gar-
nett, R., editors, Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.
Lee, D.-H. et al. (2013). Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural
networks. In Workshop on challenges in representa-
tion learning, ICML, volume 3, page 896. Atlanta.
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 3431–3440.
Olsson, V., Tranheden, W., Pinto, J., and Svensson, L.
(2021). Classmix: Segmentation-based data augmen-
tation for semi-supervised learning. In Proceedings of
the IEEE/CVF winter conference on applications of
computer vision, pages 1369–1378.
QMENTA (2020). Covid-19 ct segmentation
dataset. https://www.qmenta.com/blog/
covid-19-ct-segmentation-dataset. Accessed:
2024-09-26.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pages 234–241.
Springer.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International journal of com-
puter vision, 115:211–252.
Schlegl, T., Seeb
¨
ock, P., Waldstein, S. M., Schmidt-Erfurth,
U., and Langs, G. (2017). Unsupervised anomaly de-
tection with generative adversarial networks to guide
marker discovery. In International conference on in-
formation processing in medical imaging, pages 146–
157. Springer.
Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H.,
Raffel, C. A., Cubuk, E. D., Kurakin, A., and Li, C.-L.
(2020). Fixmatch: Simplifying semi-supervised learn-
ing with consistency and confidence. Advances in neu-
ral information processing systems, 33:596–608.
Souly, N., Spampinato, C., and Shah, M. (2017). Semi su-
pervised semantic segmentation using generative ad-
versarial network. In Proceedings of the IEEE inter-
national conference on computer vision, pages 5688–
5696.
Tsuda, H. and Hotta, K. (2019). Cell image segmentation
by integrating pix2pixs for each class. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops.
Yang, L., Qi, L., Feng, L., Zhang, W., and Shi, Y.
(2023). Revisiting weak-to-strong consistency in
semi-supervised semantic segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7236–7246.
Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo,
Y. (2019). Cutmix: Regularization strategy to train
strong classifiers with localizable features. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision, pages 6023–6032.
Zenati, H., Foo, C. S., Lecouat, B., Manek, G., and Chan-
drasekhar, V. R. (2018). Efficient gan-based anomaly
detection. arXiv preprint arXiv:1802.06222.
Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
(2018). mixup: Beyond empirical risk minimization.
In International Conference on Learning Representa-
tions.
Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. (2020).
Random erasing data augmentation. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 34, pages 13001–13008.
Zou, Y., Zhang, Z., Zhang, H., Li, C.-L., Bian, X., Huang,
J.-B., and Pfister, T. (2021). Pseudoseg: Designing
pseudo labels for semantic segmentation. In Interna-
tional Conference on Learning Representations.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
600