
search), Health Operational Plan, FSC 2014-2020,
PRIN-MUR-Ministry of Health, the National Plan for
NRRP Complementary Investments D
∧
3 4 Health:
Digital Driven Diagnostics, prognostics and therapeu-
tics for sustainable Health care, Progetto MolisCTe,
Ministero delle Imprese e del Made in Italy, Italy,
CUP: D33B22000060001, FORESEEN: FORmal
mEthodS for attack dEtEction in autonomous driv-
iNg systems CUP N.P2022WYAEW and ALOHA: a
framework for monitoring the physical and psycho-
logical health status of the Worker through Object de-
tection and federated machine learning, Call for Col-
laborative Research BRiC -2024, INAIL.
REFERENCES
Dou, Y. and Meng, W. (2023). Comparative analysis
of weka-based classification algorithms on medical
diagnosis datasets. Technology and Health Care,
31(S1):397–408. Available from: PMC10200164.
Frank, E., Hall, M. A., and Witten, I. H. (2016). The WEKA
Workbench. Morgan Kaufmann, 4th edition. On-
line Appendix for ”Data Mining: Practical Machine
Learning Tools and Techniques”.
Fu, H., Cheng, J., Xu, Y., Wong, D. W. K., Liu, J., and Cao,
X. (2018). Joint optic disc and cup segmentation based
on multi-label deep network and polar transformation.
IEEE transactions on medical imaging, 37(7):1597–
1605.
He, H., Yang, H., Mercaldo, F., Santone, A., and Huang, P.
(2024). Isolation forest-voting fusion-multioutput: A
stroke risk classification method based on the multidi-
mensional output of abnormal sample detection. Com-
puter Methods and Programs in Biomedicine, page
108255.
Huang, P., He, P., Tian, S., Ma, M., Feng, P., Xiao, H.,
Mercaldo, F., Santone, A., and Qin, J. (2022). A vit-
amc network with adaptive model fusion and multiob-
jective optimization for interpretable laryngeal tumor
grading from histopathological images. IEEE Trans-
actions on Medical Imaging, 42(1):15–28.
Huang, P., Li, C., He, P., Xiao, H., Ping, Y., Feng, P., Tian,
S., Chen, H., Mercaldo, F., Santone, A., et al. (2024).
Mamlformer: Priori-experience guiding transformer
network via manifold adversarial multi-modal learn-
ing for laryngeal histopathological grading. Informa-
tion Fusion, 108:102333.
Huang, P., Tan, X., Zhou, X., Liu, S., Mercaldo, F., and
Santone, A. (2021). Fabnet: fusion attention block
and transfer learning for laryngeal cancer tumor grad-
ing in p63 ihc histopathology images. IEEE Journal
of Biomedical and Health Informatics, 26(4):1696–
1707.
Huang, P., Zhou, X., He, P., Feng, P., Tian, S., Sun, Y., Mer-
caldo, F., Santone, A., Qin, J., and Xiao, H. (2023).
Interpretable laryngeal tumor grading of histopatho-
logical images via depth domain adaptive network
with integration gradient cam and priori experience-
guided attention. Computers in Biology and Medicine,
154:106447.
Mercaldo, F., Brunese, L., Martinelli, F., Santone, A., and
Cesarelli, M. (2023). Generative adversarial net-
works in retinal image classification. Applied Sci-
ences, 13(18):10433.
Mercaldo, F., Zhou, X., Huang, P., Martinelli, F., and San-
tone, A. (2022). Machine learning for uterine cervix
screening. In 2022 IEEE 22nd International Confer-
ence on Bioinformatics and Bioengineering (BIBE),
pages 71–74. IEEE.
Orlando, J. I., Barbosa Breda, J., Van Keer, K., Blaschko,
M. B., Blanco, P. J., and Bulant, C. A. (2018).
Towards a glaucoma risk index based on sim-
ulated hemodynamics from fundus images. In
Medical Image Computing and Computer Assisted
Intervention–MICCAI 2018: 21st International Con-
ference, Granada, Spain, September 16-20, 2018,
Proceedings, Part II 11, pages 65–73. Springer.
Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister,
H., and Ni, B. (2024). Medmnist+ 18x standardized
datasets for 2d and 3d biomedical image classification
with multiple size options: 28 (mnist-like), 64, 128,
and 224. Dataset, Version 3.0, Published on January
16, 2024. Accessed: 26 September 2024.
Zhou, X., Tang, C., Huang, P., Mercaldo, F., Santone, A.,
and Shao, Y. (2021). Lpcanet: classification of laryn-
geal cancer histopathological images using a cnn with
position attention and channel attention mechanisms.
Interdisciplinary Sciences: Computational Life Sci-
ences, 13(4):666–682.
Zhou, X., Tang, C., Huang, P., Tian, S., Mercaldo, F., and
Santone, A. (2023). Asi-dbnet: an adaptive sparse
interactive resnet-vision transformer dual-branch net-
work for the grading of brain cancer histopathological
images. Interdisciplinary Sciences: Computational
Life Sciences, 15(1):15–31.
Bioimages Synthesis and Detection Through Generative Adversarial Network: A Multi-Case Study
339