
Kamdar, H., Turk, M., and Brunner, R. (2016). Machine
learning and cosmological simulations. American As-
tronomical Society Meeting Abstracts# 227, 227.
Kisa, D., Van den Broeck, G., Choi, A., and Darwiche, A.
(2014). Probabilistic sentential decision diagrams. In
Fourteenth International Conference on the Principles
of Knowledge Representation and Reasoning.
Kobayashi, K. et al. (2022). Predicting baryonic effects on
the matter power spectrum using machine learning.
Monthly Notices of the Royal Astronomical Society,
511:3453–3463.
Koller, D., Friedman, N., and Bach, F. (2009). Probabilistic
graphical models: principles and techniques. MIT
press.
Li, C. and White, S. D. (2010). Autocorrelations of
stellar light and mass in the low-redshift universe.
Monthly Notices of the Royal Astronomical Society,
407(1):515–519.
Liang, Y., Bekker, J., and Van den Broeck, G. (2017).
Learning the structure of probabilistic sentential deci-
sion diagrams. In Proceedings of the 33rd Conference
on Uncertainty in Artificial Intelligence (UAI).
Llinares, C. (2017). The shrinking domain framework i: a
new, faster, more efficient approach to cosmological
simulations. arXiv preprint arXiv:1709.04703.
Lucie-Smith, J. et al. (2023). Learning galaxy-halo relation-
ships with graph neural networks. Monthly Notices of
the Royal Astronomical Society, 519:501–516.
McAlpine, S., Helly, J. C., Schaller, M., Trayford, J. W., Qu,
Y., Furlong, M., Bower, R. G., Crain, R. A., Schaye,
J., Theuns, T., et al. (2016). The eagle simulations of
galaxy formation: Public release of halo and galaxy
catalogues. Astronomy and Computing, 15:72–89.
Molina, A., Natarajan, S., and Kersting, K. (2017). Pois-
son sum-product networks: A deep architecture for
tractable multivariate poisson distributions. AAAI,
pages 2357–2363.
Molina, A., Vergari, A., Di Mauro, N., Natarajan, S., Espos-
ito, F., and Kersting, K. (2018). Mixed sum-product
networks: A deep architecture for hybrid domains.
Proceedings of the AAAI Conference on Artificial In-
telligence (AAAI).
More, S., Kravtsov, A. V., Dalal, N., and Gottl
¨
ober, S.
(2011). The overdensity and masses of the friends-
of-friends halos and universality of halo mass func-
tion. The Astrophysical Journal Supplement Series,
195(1):4.
M
¨
ortsell, E. (2016). Cosmological histories from the fried-
mann equation: The universe as a particle. European
Journal of Physics, 37(5):055603.
Peharz, R., Vergari, A., Stelzner, K., Molina, A., de Cam-
pos, C. P., and Kersting, K. (2020). Randomly assem-
bled tractable probabilistic models. Journal of Ma-
chine Learning Research, 21(148):1–60.
Planck, Ade, P., Aghanim, N., Armitage-Caplan, C., et al.
(2014). Planck 2013 results. xvi. cosmological param-
eters. Astron. Astrophys, 571:A16.
Poon, H. and Domingos, P. (2011). Sum-product networks:
A new deep architecture. Computer Vision Workshops
(ICCV Workshops), 2011 IEEE International Confer-
ence on, pages 689–690.
Rahman, T. and Gogate, V. (2014). Hybrid probabilis-
tic models with tractable inference. Artificial Intel-
ligence, 266:196–225.
Rashwan, A., Zhao, H., and Poupart, P. (2016). Online and
distributed bayesian moment matching for parameter
learning in sum-product networks. In Artificial Intel-
ligence and Statistics, pages 1469–1477.
Ryden, B. (2016). Introduction to cosmology. Cambridge
University Press.
Schaye, J., Crain, R. A., Bower, R. G., Furlong, M.,
Schaller, M., Theuns, T., Dalla Vecchia, C., Frenk,
C. S., McCarthy, I., Helly, J. C., et al. (2014). The
eagle project: simulating the evolution and assembly
of galaxies and their environments. Monthly Notices
of the Royal Astronomical Society, 446(1):521–554.
Somerville, R. S. and Dav
´
e, R. (2015). Physical models of
galaxy formation in a cosmological framework. An-
nual Review of Astronomy and Astrophysics, 53:51–
113.
Springel, V. (2005). The cosmological simulation code
gadget-2. Monthly notices of the royal astronomical
society, 364(4):1105–1134.
Springel, V., White, S., Tormen, G., and Kauffmann, G.
(2001). Populating a cluster of galaxies-i. results at
[formmu2] z= 0, mnras 328 (dec., 2001) 726–750.
arXiv preprint astro-ph/0012055.
Tamosiunas, A. et al. (2023). Semi-supervised learning for
galaxy classification with limited labeled data. Astron-
omy & Astrophysics, 672:A1.
Vergari, A., Mauro, N. D., Esposito, F., and Peharz,
R. (2021). Compositional generative models with
tractable inference. In Proceedings of the 34th Inter-
national Conference on Neural Information Process-
ing Systems (NeurIPS).
Villaescusa-Navarro, F. et al. (2021). The camels project:
Machine learning cosmological and astrophysical
constraints from galaxy catalogues. Astrophysical
Journal, 915:71.
Xu, X., Ho, S., Trac, H., Schneider, J., Poczos, B., and
Ntampaka, M. (2013). A first look at creating mock
catalogs with machine learning techniques. The As-
trophysical Journal, 772(2):147.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
908