
REFERENCES
Adomavicius, G., Mobasher, B., Ricci, F., and Tuzhilin,
A. (2011). Context-aware recommender systems. AI
Magazine, 32(3):67–80.
Alpaydin, E. (2004). Design and Analysis of Machine
Learning Experiments. Introduction to Machine
Learning.
Cho, E., Myers, S. A., and Leskovec, J. (2011). Friendship
and mobility: user movement in location-based social
networks. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD’11, page 1082–1090.
Cho, K., van Merri
¨
enboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. (2014).
Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
1724–1734.
Chung, Y., Kim, N. R., Park, C. Y., and Lee, J. H. (2018).
Improved neighborhood search for collaborative filter-
ing. International Journal of Fuzzy Logic and Intelli-
gent Systems, 18(1):29–40.
Ding, Z., Li, X., Jiang, C., and Zhou, M. (2018). Objectives
and state-of-the-art of location-based social network
recommender systems. ACM Comput. Surv., 51(1).
Gao, H., Tang, J., and Liu, H. (2012). Exploring social-
historical ties on location-based social networks. In
Proceedings of the 6th International AAAI Conference
on Weblogs and Social Media.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. The MIT Press.
Hinton, G. E., McClelland, J. L., and Rumelhart, D. E.
(1986). Distributed Representations. In Parallel Dis-
tributed Processing: Explorations in the Microstruc-
ture of Cognition, Vol. 1: Foundations, chapter Dis-
tribute Representations, pages 77–109. MIT Press,
Cambridge, MA, USA.
Hochreiter, S. and Schmidhuber, J. (1997). Long Short-
Term Memory. Neural Computation.
Hossain, M. B., Arefin, M. S., Sarker, I. H., Kowsher, M.,
Dhar, P. K., and Koshiba, T. (2022). Caran: A context-
aware recency-based attention network for point-of-
interest recommendation. IEEE Access, 10:36299–
36310.
J
¨
arvelin, K. and Kek
¨
al
¨
ainen, J. (2002). Cumulated gain-
based evaluation of ir techniques. ACM Trans. Inf.
Syst., 20(4):422–446.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. In 1st International Conference on Learning
Representations, ICLR 2013 - Workshop Track Pro-
ceedings.
Mitchell, T. M. (1997). Machine Learning. McGraw-Hill,
Inc., New York, NY, USA, 1 edition.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and
Riedl, J. (1994). GroupLens: An open architecture
for collaborative filtering of netnews. In Proceedings
of the 1994 ACM Conference on Computer Supported
Cooperative Work, CSCW 1994.
Rossi, R. A. and Ahmed, N. K. (2015). The network data
repository with interactive graph analytics and visual-
ization. In AAAI.
S
´
anchez, P. and Bellog
´
ın, A. (2022). Point-of-interest
recommender systems based on location-based social
networks: A survey from an experimental perspective.
ACM Comput. Surv., 54(11s).
Shani, G. and Gunawardana, A. (2011). Evaluating recom-
mendation systems. In Recommender Systems Hand-
book, chapter 8. Springer US, Boston, MA, 1 edition.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
(2017). Attention is all you need. In Advances in
Neural Information Processing Systems, volume 30.
Curran Associates, Inc.
Waga, K., Tabarcea, A., and Fr
¨
anti, P. (2011). Context
aware recommendation of location-based data. In 15th
International Conference on System Theory, Control
and Computing, pages 1–6.
Wahurwagh, R. A. and Chouragade, P. M. (2019). Context
aware personalized poi recommendation with multi-
ple tourist information using hierarchical modeling. In
2019 3rd International Conference on Trends in Elec-
tronics and Informatics (ICOEI), pages 241–243.
Wang, C., Peng, C., Wang, M., Yang, R., Wu, W., Rui, Q.,
and Xiong, N. N. (2021). Cthgat: Category-aware and
time-aware next point-of-interest via heterogeneous
graph attention network. In 2021 IEEE International
Conference on Systems, Man, and Cybernetics (SMC),
pages 2420–2426.
Wang, D., Deng, S., and Xu, G. (2018). Sequence-based
context-aware music recommendation. Information
Retrieval Journal.
ICEIS 2025 - 27th International Conference on Enterprise Information Systems
1068