
Bojarski, M., Testa, D., Dworakowski, D., Firner, B., Flepp,
B., Goyal, P., Jackel, L. D., Monfort, M., Muller,
U., Zhang, J., Zhang, X., Zhao, J., and Zieba, K.
(2016). End to end learning for self-driving cars.
arXiv preprint arXiv:1604.07316.
Chen, D. and Krahenbuhl, P. (2022). Learning from all ve-
hicles. IEEE Conference on Computer Vision and Pat-
tern Recognition.
Codevilla, F., M
¨
uller, M., L
´
opez, A., Koltun, V., and Doso-
vitskiy, A. (2018). End-to-end driving via conditional
imitation learning. In IEEE International Conference
on Robotics and Automation (ICRA), pages 4693–
4700.
Dai, S., Li, L., and Li, Z. (2021). Modeling vehicle interac-
tions via modified lstm models for trajectory predic-
tion. IEEE Access, 7:2169–3536.
Grigorescu, S., Trasnea, B., Cocias, T., and Macesanu,
G. (2020). A survey of deep learning techniques
for autonomous driving. Journal of Field Robotics,
37(3):362–386.
Han, T., Jung, J., and Ozguner, U. (2019). Driving intention
recognition and lane change prediction on the high-
way. In IEEE Intelligent Vehicles Symposium.
He, K., Chen, X., Xie, S., Li, Y., Dollar, P., and Girshick,
R. (2021). Masked autoencoders are scalable vision
learners. arXiv preprint arXiv:2111.06377. Tech re-
port. v3: add robustness evaluation.
Hegde, C., Dash, S., and Agarwal, P. (2020). Vehicle trajec-
tory prediction using gan. Fourth International Con-
ference on I-SMAC (IoT in Social, Mobile, Analytics
and Cloud).
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. In Neural Computation, volume 9, pages
1735–1780.
Huang, H., Zeng, Z., Yao, D., Pei, X., and Zhang, Y. (2022).
Spatial-temporal convLSTM for vehicle driving inten-
tion prediction. Tsinghua Science and Technology,
27:599–609.
Jeong, D., Baek, M., and Lee, S.-S. (2017). Long-
term prediction of vehicle trajectory based on a deep
neural network. International Conference on Infor-
mation and Communication Technology Convergence
(ICTC).
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Mo, X., Xing, Y., and Lv, C. (2020). Interaction-aware
trajectory prediction of connected vehicles using cnn-
lstm networks. IECON The 46th Annual Conference
of the IEEE Industrial Electronics Society.
Richardos, D., Anastasia, B., Georgios, D., and Angelos, A.
(2020). Vehicle maneuver-based long-term trajectory
prediction at intersection crossings. IEEE 3rd Con-
nected and Automated Vehicles Symposium (CAVS).
Wilson, B., Qi, W., Agarwal, T., Lambert, J., Singh, J.,
Khandelwal, S., Pan, B., Kumar, R., Hartnett, A.,
Pontes, J. K., Ramanan, D., Carr, P., and Hays, J.
(2023). Argoverse 2: Next generation datasets for
self-driving perception and forecasting. arXiv preprint
arXiv:2301.00493. Proceedings of the Neural Infor-
mation Processing Systems Track on Datasets and
Benchmarks.
Zhang, T., Fu, M., Song, W., Yang, Y., and Wang, M.
(2020). Trajectory prediction based on constraints of
vehicle kinematics and social interaction. IEEE Inter-
national Conference on Systems, Man, and Cybernet-
ics (SMC).
Simultaneous Estimation of Driving Intentions for Multiple Vehicles Using Video Transformer
477