
5 CONCLUSION AND FUTURE
WORK
In conclusion, we introduced SBC-UNet3+, a cell
segmentation and classification model for histologi-
cal images. Our model surpasses existing methods in
segmentation, boundary detection, and classification
by utilizing full-scale skip connections and Convolu-
tional Block Attention Module (CBAM) mechanisms,
ensuring accurate segmentation and enhanced bound-
ary delineation. This is crucial for capturing morpho-
logical details and differentiating overlapping cells,
which is vital for histopathological diagnosis. Future
work will explore integrating graph-based techniques
to improve tissue analysis, using probabilistic models
to refine graph accuracy and feature representation,
which could offer deeper insights into tissue structure
and phenotypic relationships, advancing medical im-
age analysis and cancer diagnosis.
REFERENCES
Chen, K., Zhang, N., Powers, L., and Roveda, J. (2019).
Cell nuclei detection and segmentation for computa-
tional pathology using deep learning. In 2019 Spring
Simulation Conference (SpringSim), pages 1–6.
Chen, S., Ding, C., Liu, M., Cheng, J., and Tao, D. (2023).
Cpp-net: Context-aware polygon proposal network
for nucleus segmentation. IEEE Transactions on Im-
age Processing, 32:980–994.
Cutler, K. J., Stringer, C., Wiggins, P. A., and
Mougous, J. D. (2022). Omnipose: a high-precision
morphology-independent solution for bacterial cell
segmentation. bioRxiv.
Feng, Z., Wang, Z., Wang, X., Mao, Y., Li, T., Lei, J., Wang,
Y., and Song, M. (2021). Mutual-complementing
framework for nuclei detection and segmentation in
pathology image. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 4016–
4025.
Gamper, J., Koohbanani, N. A., Benes, K., Graham, S., Ja-
hanifar, M., Khurram, S. A., Azam, A., Hewitt, K.,
and Rajpoot, N. (2020). Pannuke dataset extension,
insights and baselines.
Graham, S., Vu, Q. D., Raza, S. E. A., Azam, A., Tsang,
Y. W., Kwak, J. T., and Rajpoot, N. (2019). Hover-
net: Simultaneous segmentation and classification of
nuclei in multi-tissue histology images. Medical Im-
age Analysis, 58:101563.
H
¨
orst, F., Rempe, M., Heine, L., Seibold, C., Keyl, J., Bal-
dini, G., Ugurel, S., Siveke, J., Gr
¨
unwald, B., Egger,
J., and Kleesiek, J. (2024). Cellvit: Vision transform-
ers for precise cell segmentation and classification.
Medical Image Analysis, 94:103143.
Ibtehaz, N. and Rahman, M. S. (2020). Multiresunet
: Rethinking the u-net architecture for multimodal
biomedical image segmentation. Neural Networks,
121:74–87.
Ilyas, T., Mannan, Z. I., Khan, A., Azam, S., Kim, H., and
De Boer, F. (2022). Tsfd-net: Tissue specific feature
distillation network for nuclei segmentation and clas-
sification. Neural Networks, 151:1–15.
Im, Y.-H., Park, S.-H., and Lee, S.-C. (2024). Hda-net: H&e
and rgb dual attention network for nuclei instance seg-
mentation. IEEE Access, 12:56622–56632.
Khuriwal, N. and Mishra, N. (2018). Breast cancer detec-
tion from histopathological images using deep learn-
ing. In 2018 3rd International Conference and Work-
shops on Recent Advances and Innovations in Engi-
neering (ICRAIE), pages 1–4.
Kumar, N., Gupta, R., and Gupta, S. (2020). Whole slide
imaging (wsi) in pathology: Current perspectives and
future directions. Journal of Digital Imaging, 33.
Murugesan, B., Sarveswaran, K., Shankaranarayana, S. M.,
Ram, K., and Sivaprakasam, M. (2019). Psi-net:
Shape and boundary aware joint multi-task deep
network for medical image segmentation. CoRR,
abs/1902.04099.
Raza, S. E. A., Cheung, L., Shaban, M., Graham, S., Ep-
stein, D., Pelengaris, S., Khan, M., and Rajpoot, N. M.
(2019). Micro-net: A unified model for segmentation
of various objects in microscopy images. Medical Im-
age Analysis, 52:160–173.
Rizzo, P., Girolami, I., Marletta, S., Pantanowitz, L., An-
tonini, P., Brunelli, M., Santonicco, N., Vacca, P., Tu-
mino, N., Moretta, L., Parwani, A., Satturwar, S., Ec-
cher, A., and Munari, E. (2022). Technical and diag-
nostic issues in whole slide imaging published vali-
dation studies. Frontiers in Oncology, 12. Publisher
Copyright: Copyright © 2022 Rizzo, Girolami, Mar-
letta, Pantanowitz, Antonini, Brunelli, Santonicco,
Vacca, Tumino, Moretta, Parwani, Satturwar, Eccher
and Munari.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. volume 9351, pages 234–241.
Stringer, C., Michaelos, M., and Pachitariu, M. (2020).
Cellpose: a generalist algorithm for cellular segmen-
tation. bioRxiv.
van Rijthoven, M., Balkenhol, M., Silin¸a, K., van der Laak,
J., and Ciompi, F. (2020). Hooknet: multi-resolution
convolutional neural networks for semantic segmenta-
tion in histopathology whole-slide images.
Yao, K., Huang, K., Sun, J., and Hussain, A. (2024).
Pointnu-net: Keypoint-assisted convolutional neural
network for simultaneous multi-tissue histology nu-
clei segmentation and classification. IEEE Transac-
tions on Emerging Topics in Computational Intelli-
gence, 8(1):802–813.
Zhao, Y., Yang, F., Fang, Y., Liu, H., Zhou, N., Zhang,
J., Sun, J., Yang, S., Menze, B., Fan, X., and Yao,
J. (2020). Predicting lymph node metastasis us-
ing histopathological images based on multiple in-
stance learning with deep graph convolution. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4836–4845.
SBC-UNet3+: Classification of Nuclei in Histology Imaging Based on Multi Branch UNET3+ Segmentation Model
609