
Garrison, L., M
¨
uller, J., Schreiber, S., Oeltze-Jafra, S.,
Hauser, H., and Bruckner, S. (2021). Dimlift: In-
teractive hierarchical data exploration through dimen-
sional bundling. IEEE Transactions on Visualization
and Computer Graphics, 27(6):2908–2922.
Goodwin, S., Dykes, J., Slingsby, A., and Turkay, C.
(2015). Visualizing multiple variables across scale
and geography. IEEE Transactions on Visualization
and Computer Graphics, 22(1):599–608.
Gotz, D., Zhang, J., Wang, W., Shrestha, J., and Borland,
D. (2019). Visual analysis of high-dimensional event
sequence data via dynamic hierarchical aggregation.
IEEE Transactions on Visualization and Computer
Graphics, 26(1):440–450.
Grossmann, N., Gr
¨
oller, E., and Waldner, M. (2022). Con-
cept splatters: Exploration of latent spaces based on
human interpretable concepts. Computers & Graph-
ics, 105:73–84.
Heinrich, J. and Weiskopf, D. (2013). State of the art of
parallel coordinates. Eurographics (State of the Art
Reports), pages 95–116.
Herr, D., Han, Q., Lohmann, S., and Ertl, T. (2016). Vi-
sual clutter reduction through hierarchy-based projec-
tion of high-dimensional labeled data. In Graphics
Interface, pages 109–116.
Hinterreiter, A., Steinparz, C., Sch
¨
ofl, M., Stitz, H., and
Streit, M. (2021). Projection path explorer: exploring
visual patterns in projected decision-making paths.
ACM Transactions on Interactive Intelligent Systems
(TiiS), 11(3-4):1–29.
Hoffman, P., Grinstein, G., and Pinkney, D. (1999). Dimen-
sional anchors: a graphic primitive for multidimen-
sional multivariate information visualizations. In Pro-
ceedings ACM Workshop on New Paradigms in Infor-
mation Visualization and Manipulation, pages 9–16.
H
¨
ollt, T., Vilanova, A., Pezzotti, N., Lelieveldt, B. P. F.,
and Hauser, H. (2019). Focus+ context exploration of
hierarchical embeddings. Computer Graphics Forum,
38(3):569–579.
Holten, D. (2006). Hierarchical edge bundles: Visualiza-
tion of adjacency relations in hierarchical data. IEEE
Transactions on Visualization and Computer Graph-
ics, 12(5):741–748.
Huang, G., Li, Y., Tan, X., Tan, Y., and Lu, X. (2020).
Planet: A radial layout algorithm for network visual-
ization. Physica A: Statistical Mechanics and its Ap-
plications, 539:122948.
Hullman, J., Adar, E., and Shah, P. (2011). Benefitting in-
fovis with visual difficulties. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2213–
2222.
Kohonen, T. (1998). The self-organizing map. Neurocom-
puting, 21(1-3):1–6.
Lex, A., Streit, M., Partl, C., Kashofer, K., and Schmalstieg,
D. (2010). Comparative analysis of multidimensional,
quantitative data. IEEE Transactions on Visualization
and Computer Graphics, 16(6):1027–1035.
Li, G., Zhang, Y., Dong, Y., Liang, J., Zhang, J., Wang, J.,
McGuffin, M. J., and Yuan, X. (2019). Barcodetree:
Scalable comparison of multiple hierarchies. IEEE
Transactions on Visualization and Computer Graph-
ics, 26(1):1022–1032.
McInnes, L., Healy, J., and Melville, J. (2018). UMAP:
Uniform manifold approximation and projection for
dimension reduction. arXiv:1802.03426.
MJDP (2024). Montreux Jazz Digital Project.
https://go.epfl.ch/mjdp.
Pagliosa, L. d. C. and Telea, A. C. (2019). Radviz++: Im-
provements on radial-based visualizations. Informat-
ics, 6(2):16.
Robinson, I. and Pierce-Hoffman, E. (2020). Tree-sne:
Hierarchical clustering and visualization using t-sne.
arXiv preprint arXiv:2002.05687.
SankeyTrees (2023). SankeyTrees.
https://medium.com/@timelyportfolio/visualizing-
trees-sankey-tree-18d1815f43e2.
Schulz, H.-J., Hadlak, S., and Schumann, H. (2010). The
design space of implicit hierarchy visualization: A
survey. IEEE Transactions on Visualization and Com-
puter Graphics, 17(4):393–411.
Tatu, A., Maaß, F., F
¨
arber, I., Bertini, E., Schreck, T., Seidl,
T., and Keim, D. (2012). Subspace search and visu-
alization to make sense of alternative clusterings in
high-dimensional data. In IEEE Conference on Visual
Analytics Science and Technology, pages 63–72.
van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-SNE. Journal of Machine Learning Research,
9(86):2579–2605.
Vehlow, C., Beck, F., and Weiskopf, D. (2015). The State of
the Art in Visualizing Group Structures in Graphs. In
Borgo, R., Ganovelli, F., and Viola, I., editors, Pro-
ceedings Eurographics Conference on Visualization
(EuroVis) - STARs.
Von Landesberger, T., Kuijper, A., Schreck, T., Kohlham-
mer, J., van Wijk, J. J., Fekete, J.-D., and Fellner,
D. W. (2011). Visual analysis of large graphs: State-
of-the-art and future research challenges. Computer
graphics forum, 30(6):1719–1749.
Walchshofer, C., Hinterreiter, A., Xu, K., Stitz, H., and
Streit, M. (2020). Provectories: Embedding-based
analysis of interaction provenance data. IEEE Trans-
actions on Visualization and Computer Graphics.
Watanabe, K., Wu, H.-Y., Niibe, Y., Takahashi, S., and Fu-
jishiro, I. (2015). Biclustering multivariate data for
correlated subspace mining. In IEEE Pacific Visual-
ization Symposium, pages 287–294.
Yates, A., Webb, A., Sharpnack, M., Chamberlin, H.,
Huang, K., and Machiraju, R. (2014). Visualizing
multidimensional data with glyph sploms. Computer
Graphics Forum, 33(3):301–310.
Yuan, X., Ren, D., Wang, Z., and Guo, C. (2013). Di-
mension projection matrix/tree: Interactive subspace
visual exploration and analysis of high dimensional
data. IEEE Transactions on Visualization and Com-
puter Graphics, 19(12):2625–2633.
Zhou, F., Bai, B., Wu, Y., Chen, M., Zhong, Z., Zhu, R.,
Chen, Y., and Zhao, Y. (2019). Fuzzyradar: visual-
ization for understanding fuzzy clusters. Journal of
Visualization, 22:913–926.
SnakeTrees: A Visualization Solution for Discovery and Exploration of Audiovisual Features
751