
Grcic, M., Bevandi
´
c, P., and Segvic, S. (2022). Densehy-
brid: Hybrid anomaly detection for dense open-set
recognition. In European Conference on Computer
Vision (ECCV), pages 500–517.
Grcic, M.,
ˇ
Sari
´
c, J., and
ˇ
Segvi
´
c, S. (2023). On advantages
of mask-level recognition for outlier-aware segmen-
tation. IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages
2937–2947.
Gudovskiy, D., Okuno, T., and Nakata, Y. (2023). Con-
current misclassification and out-of-distribution de-
tection for semantic segmentation via energy-based
normalizing flow. In Proceedings of the Thirty-Ninth
Conference on Uncertainty in Artificial Intelligence.
JMLR.org.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Hendrycks, D. and Gimpel, K. (2016). A baseline for de-
tecting misclassified and out-of-distribution examples
in neural networks.
H
¨
ummer, C., Schwonberg, M., Zhou, L., Cao, H., Knoll, A.,
and Gottschalk, H. (2023). Vltseg: Simple transfer of
clip-based vision-language representations for domain
generalized semantic segmentation.
Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017).
Simple and scalable predictive uncertainty estimation
using deep ensembles. In Proceedings of the 31st
International Conference on Neural Information Pro-
cessing Systems, pages 6405–6416. Curran Associates
Inc.
Lee, H., Kim, S. T., Navab, N., and Ro, Y. (2020). Efficient
ensemble model generation for uncertainty estimation
with bayesian approximation in segmentation.
Lee, K., Lee, K., Lee, H., and Shin, J. (2018). A simple uni-
fied framework for detecting out-of-distribution sam-
ples and adversarial attacks. Neural Information Pro-
cessing Systems (NeurIPS).
Liang, S., Li, Y., and Srikant, R. (2018). Enhancing the re-
liability of out-of-distribution image detection in neu-
ral networks. International Conference on Learning
(ICLR).
Lis, K., Honari, S., Fua, P., and Salzmann, M. (2020). De-
tecting road obstacles by erasing them.
Lis, K., Nakka, K., Fua, P., and Salzmann, M. (2019).
Detecting the unexpected via image resynthesis. In
IEEE/CVF International Conference on Computer Vi-
sion (ICCV).
Liu, Y., Ding, C., Tian, Y., Pang, G., Belagiannis, V., Reid,
I., and Carneiro, G. (2023). Residual pattern learning
for pixel-wise out-of-distribution detection in seman-
tic segmentation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
pages 1151–1161.
Maag, K., Chan, R., Uhlemeyer, S., Kowol, K., and
Gottschalk, H. (2023). Two video data sets for track-
ing and retrieval of out of distribution objects. In Com-
puter Vision – ACCV 2022, pages 476–494. Springer
Nature Switzerland.
Maag, K. and Riedlinger, T. (2024). Pixel-wise gradient un-
certainty for convolutional neural networks applied to
out-of-distribution segmentation. International Joint
Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications (VISAPP),
pages 112–122.
Maag, K. and Rottmann, M. (2023). False negative reduc-
tion in semantic segmentation under domain shift us-
ing depth estimation. In Proceedings of the 18th Inter-
national Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications.
SCITEPRESS - Science and Technology Publications.
MacKay, D. J. C. (1992). A practical bayesian framework
for backpropagation networks. Neural Computation,
4(3):448–472.
Mukhoti, J. and Gal, Y. (2018). Evaluating bayesian deep
learning methods for semantic segmentation.
Nayal, N., Yavuz, M., Henriques, J. a. F., and G
¨
uney, F.
(2023). Rba: Segmenting unknown regions rejected
by all. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 711–
722.
Pinggera, P., Ramos, S., Gehrig, S., Franke, U., Rother,
C., and Mester, R. (2016). Lost and found: de-
tecting small road hazards for self-driving vehicles.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).
Rai, S. N., Cermelli, F., Fontanel, D., Masone, C., and Ca-
puto, B. (2023). Unmasking anomalies in road-scene
segmentation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
pages 4037–4046.
Sim
´
eoni, O., Sekkat, C., Puy, G., Vobecky, A., Zablocki, E.,
and P
´
erez, P. (2023). Unsupervised object localiza-
tion: Observing the background to discover objects.
In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3176–3186.
Sodano, M., Magistri, F., Nunes, L., Behley, J., and Stach-
niss, C. (2024). Open-World Semantic Segmentation
Including Class Similarity . In 2024 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 3184–3194. IEEE Computer Society.
Tian, Y., Liu, Y., Pang, G., Liu, F., Chen, Y., and Carneiro,
G. (2022). Pixel-wise energy-biased abstention learn-
ing for anomaly segmentation on complex urban driv-
ing scenes. In European Conference on Computer Vi-
sion (ECCV).
Voj
´
ı
ˇ
r, T. and Matas, J. (2023). Image-consistent de-
tection of road anomalies as unpredictable patches.
In IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 5480–5489.
Voj
´
ı
ˇ
r, T.,
ˇ
Sipka, T., Aljundi, R., Chumerin, N., Reino, D. O.,
and Matas, J. (2021). Road anomaly detection by par-
tial image reconstruction with segmentation coupling.
In IEEE/CVF International Conference on Computer
Vision (ICCV), pages 15651–15660.
Voj
´
ı
ˇ
r, T.,
ˇ
Sochman, J., and Matas, J. (2024). Pixood: Pixel-
level out-of-distribution detection.
Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2023a).
Yolov7: Trainable bag-of-freebies sets new state-
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
494