
Deeplearning4j (2023). Introduction to core deeplearning4j
concepts. https://deeplearning4j.konduit.ai/. [Online;
accessed 16-January-2025].
EarlyStopping (2023). What is early stopping? https:
//deeplearning4j.konduit.ai/. [Online; accessed 16-
January-2025].
Goh, J., Adepu, S., Tan, M., and Lee, Z. S. (2017). Anomaly
detection in cyber physical systems using recurrent
neural networks. In 2017 IEEE 18th International
Symposium on High Assurance Systems Engineering
(HASE), pages 140–145. IEEE.
Haque, S. A., Rahman, M., and Aziz, S. M. (2015). Sen-
sor anomaly detection in wireless sensor networks for
healthcare. Sensors, 15(4):8764–8786.
Hochenbaum, J., Vallis, O. S., and Kejariwal, A. (2017).
Automatic anomaly detection in the cloud via statisti-
cal learning. arXiv preprint arXiv:1704.07706.
Hundman, K., Constantinou, V., Laporte, C., Colwell,
I., and Soderstrom, T. (2018). Detecting space-
craft anomalies using LSTMs and nonparametric dy-
namic thresholding. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge dis-
covery & data mining, pages 387–395.
Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S.
(2001). Locally adaptive dimensionality reduction for
indexing large time series databases. In Proceedings
of the 2001 ACM SIGMOD international conference
on Management of data, pages 151–162.
Lavin, A. and Ahmad, S. (2015). Evaluating real-time
anomaly detection algorithms–the numenta anomaly
benchmark. In 2015 IEEE 14th international confer-
ence on machine learning and applications (ICMLA),
pages 38–44. IEEE.
Lee, M.-C. and Lin, J.-C. (2023a). RePAD2: Real-
time lightweight adaptive anomaly detection for open-
ended time series. In Proceedings of the 8th Interna-
tional Conference on Internet of Things, Big Data and
Security - IoTBDS, pages 208–217. INSTICC.
Lee, M.-C. and Lin, J.-C. (2023b). RoLA: A real-time on-
line lightweight anomaly detection system for multi-
variate time series. In Proceedings of the 18th Inter-
national Conference on Software Technologies - IC-
SOFT, pages 313–322. INSTICC.
Lee, M.-C., Lin, J.-C., and Gan, E. G. (2020a). ReRe: A
lightweight real-time ready-to-go anomaly detection
approach for time series. In 2020 IEEE 44th Annual
Computers, Software, and Applications Conference
(COMPSAC), pages 322–327. IEEE. arXiv preprint
arXiv:2004.02319. The updated version of the ReRe
algorithm from arXiv was used in this RePAD3 paper.
Lee, M.-C., Lin, J.-C., and Gran, E. G. (2020b). RePAD:
real-time proactive anomaly detection for time series.
In Advanced Information Networking and Applica-
tions: Proceedings of the 34th International Confer-
ence on Advanced Information Networking and Ap-
plications (AINA-2020), pages 1291–1302. Springer.
arXiv preprint arXiv:2001.08922.
Lee, M.-C., Lin, J.-C., and Gran, E. G. (2021a). How far
should we look back to achieve effective real-time
time-series anomaly detection? In Advanced Infor-
mation Networking and Applications: Proceedings of
the 35th International Conference on Advanced In-
formation Networking and Applications (AINA-2021),
Volume 1, pages 136–148. Springer. arXiv preprint
arXiv:2102.06560.
Lee, M.-C., Lin, J.-C., and Gran, E. G. (2021b). SALAD:
Self-adaptive lightweight anomaly detection for real-
time recurrent time series. In 2021 IEEE 45th Annual
Computers, Software, and Applications Conference
(COMPSAC), pages 344–349. IEEE. arXiv preprint
arXiv:2104.09968.
LinkedIn (2018). linkedin/luminol [online code reposi-
tory]. https://github.com/linkedin/luminol. [Online;
accessed 16-January-2025].
Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation
forest. In 2008 eighth IEEE international conference
on data mining, pages 413–422. IEEE.
Ma, X., Almutairi, L., Alwakeel, A. M., and Alhameed,
M. H. (2023). Cyber physical system for distributed
network using dos based hierarchical bayesian net-
work. Journal of Grid Computing, 21(2):27.
Nevill-Manning, C. G. and Witten, I. H. (1997). Identify-
ing hierarchical structure in sequences: A linear-time
algorithm. Journal of Artificial Intelligence Research,
7:67–82.
Ren, H., Xu, B., Wang, Y., Yi, C., Huang, C., Kou, X., Xing,
T., Yang, M., Tong, J., and Zhang, Q. (2019). Time-
series anomaly detection service at microsoft. In Pro-
ceedings of the 25th ACM SIGKDD international con-
ference on knowledge discovery & data mining, pages
3009–3017.
Schneider, J., Wenig, P., and Papenbrock, T. (2021). Dis-
tributed detection of sequential anomalies in univari-
ate time series. The VLDB Journal, 30(4):579–602.
Senin, P. (2023). GrammarViz 3.0. https://grammarviz2.
github.io/grammarviz2
site/. [Online; accessed 16-
January-2025].
Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedi-
hardjo, A. P., Chen, C., and Frankenstein, S. (2018).
GrammarViz 3.0: Interactive discovery of variable-
length time series patterns. ACM Transactions on
Knowledge Discovery from Data (TKDD), 12(1):1–
28.
Siffer, A., Fouque, P.-A., Termier, A., and Largouet, C.
(2017). Anomaly detection in streams with ex-
treme value theory. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 1067–1075.
Wang, X., Yao, Z., and Papaefthymiou, M. (2023). A
real-time electrical load forecasting and unsuper-
vised anomaly detection framework. Applied Energy,
330:120279.
Wu, W., He, L., Lin, W., Su, Y., Cui, Y., Maple, C., and
Jarvis, S. (2020). Developing an unsupervised real-
time anomaly detection scheme for time series with
multi-seasonality. IEEE Transactions on Knowledge
and Data Engineering, 34(9):4147–4160.
Yang, Z., Soltani, I., and Darve, E. (2023). Anomaly de-
tection with domain adaptation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2957–2966.
RePAD3: Advanced Lightweight Adaptive Anomaly Detection for Univariate Time Series of Any Pattern
585