
A. Rudenko, L. Palmieri, M. H. K. M. K.-D. M. G. and
Arras, K. O. (2020). Human motion trajectory predic-
tion: A survey. The International Journal of Robotics
Research, 39(8):895–935.
B. Yang, S. Sun, J. L. X. L. and Tian, Y. (2019). Traffic
flow prediction using lstm with feature enhancement.
Neurocomputing, 332:320–327.
C. Arti, G. Sharad, K. P. P. C. and Kumar, S. (2022).
Urban traffic congestion: Its causes-consequences-
mitigation. Research Journal of Chemistry and En-
vironment, 26(12):164–176.
C. Wang, H. L. and Lu, W. (2022). Fast prediction of
vehicle driving intentions and trajectories based on
lightweight methods. IEEE Journal of Radio Fre-
quency Identification, 6:917–921.
Deo, N. and Trivedi, M. M. (2017). Learning and predict-
ing on-road pedestrian behavior around vehicles. In
2017 IEEE 20th International Conference on Intelli-
gent Transportation Systems (ITSC), pages 1–6. IEEE.
E. Zhang, N. Masoud, M. B. J. L. and Malhan, R. K. (2022).
Step attention: Sequential pedestrian trajectory pre-
diction. IEEE Sensors Journal, 22(8):8071–8083.
Genet, R. and Inzirillo, H. (2024). Tkan: Tempo-
ral kolmogorov-arnold networks. arXiv preprint
arXiv:2405.07344.
H. Xue, D. Q. H. and Reynolds, M. (2020). Poppl:
Pedestrian trajectory prediction by lstm with auto-
matic route class clustering. IEEE Transactions on
Neural Networks and Learning Systems, 32(1):77–90.
H. Zhao, J. Gao, T. L. C. S. B. S. B. V. Y. S. Y. C. C. S. and
Li, C. (2021). Tnt: Target-driven trajectory predic-
tion. In Conference on Robot Learning, pages 895–
904. PMLR.
H. Zhou, X. Yang, D. R. H. H. and Fan, M. (2023). Csir:
Cascaded sliding cvaes with iterative socially-aware
rethinking for trajectory prediction. IEEE Transac-
tions on Intelligent Transportation Systems.
J. Sun, Z. Wang, J. L. and Lu, C. (2021). Unified and fast
human trajectory prediction via conditionally parame-
terized normalizing flow. IEEE Robotics and Automa-
tion Letters, 7(2):842–849.
K. Lv, L. Y. and Ni, X. (2024). Learning autoencoder diffu-
sion models of pedestrian group relationships for mul-
timodal trajectory prediction. IEEE Transactions on
Instrumentation and Measurement.
K. Xu, L. C. and Wang, S. (2024). Kolmogorov-arnold net-
works for time series: Bridging predictive power and
interpretability. arXiv preprint, arXiv:2406.02496.
Kashefi, A. (2024). Kolmogorov-arnold pointnet: Deep
learning for prediction of fluid fields on irregular ge-
ometries. arXiv preprint, arXiv:2408.02950.
L. Shi, L. Wang, C. L. S. Z. W. T. N. Z. and Hua, G. (2023).
Representing multimodal behaviors with mean loca-
tion for pedestrian trajectory prediction. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
45(9):11184–11202.
M. R. Mohebbi, J. Klinger, M. D. J. M. N. A. and Tava-
soli, M. (2024). Advanced driving behavior analy-
sis through kolmogorov-arnold network and uav traf-
fic data. Accepted, to appear.
M. R. Mohebbi, M. Tavasoli, M. D. J. M. N. A. M. J. H. Z.
and Yamnenko, I. (2024). Vehicle trajectory predic-
tion in congested urban traffic leveraging liquid neural
network and uav data. Accepted, to appear.
M. R. Mohebbi, M. J. Hassan Zada, M. R.-S. M. D. and
Yamnenko, I. Network traffic co-movement assess-
ment via oriented basis signal processing and ensem-
ble decision trees. Not Published.
M.
´
A. De Miguel, J. M. A. and Garcia, F. (2022). Vehi-
cles trajectory prediction using recurrent vae network.
IEEE Access, 10:32742–32749.
P. Rathore, D. Kumar, S. R. M. P. and Bezdek, J. C. (2019).
A scalable framework for trajectory prediction. IEEE
Transactions on Intelligent Transportation Systems,
20(10):3860–3874.
R. SenthilPrabha, D. Sasikumar, G. S. K. N. and Har-
ish, P. (2023). Smart traffic management system
through optimized network architecture for the smart
city paradigm shift. In 2023 International Confer-
ence on Intelligent Systems for Communication, IoT
and Security (ICISCoIS), pages 700–705. IEEE.
R. Wang, X. Song, Z. H. and Cui, Y. (2022). Spatio-
temporal interaction aware and trajectory distribution
aware graph convolution network for pedestrian mul-
timodal trajectory prediction. IEEE Transactions on
Instrumentation and Measurement, 72:1–1.
S. Gundreddy, R. Ramkumar, R. R. K. M. and Bakshi, S.
(2023). Perspective distortion model for pedestrian
trajectory prediction for consumer applications. IEEE
Transactions on Consumer Electronics.
S. Qiao, F. Gao, J. W. and Zhao, R. (2023). An enhanced ve-
hicle trajectory prediction model leveraging lstm and
social-attention mechanisms. IEEE Access.
T. Wu, P. Lei, F. L. and Chen, J. (2022). Space-time tree
search for long-term trajectory prediction. IEEE Ac-
cess, 10:117745–117756.
W. Zhu, Y. Liu, M. Z. and Yi, Y. (2023). Reciprocal con-
sistency prediction network for multi-step human tra-
jectory prediction. IEEE Transactions on Intelligent
Transportation Systems, 24(6):6042–6052.
X. Kong, Z. Xu, G. S. J. W. Q. Y. and Zhang, B. (2016). Ur-
ban traffic congestion estimation and prediction based
on floating car trajectory data. Future Generation
Computer Systems, 61:97–107.
X. Shan, W. Yu, Z. L. C. W. Y. R. and Zhang, J. (2023).
Vehicle trajectory-based traffic volume prediction on
urban roads with fast-communication license plate
recognition data. IEEE Transactions on Intelligent
Transportation Systems, 25(3):2768–2778.
Y. Li, Y. Jiang, Z. X. and Wu, X. (2024). Improv-
ing interaction-based vehicle trajectory prediction via
handling sensing failures. IEEE Sensors Journal.
Y. Lv, Y. Duan, W. K. Z. L. and Wang, F. Y. (2014). Traf-
fic flow prediction with big data: A deep learning ap-
proach. IEEE Transactions on Intelligent Transporta-
tion Systems, 16(2):865–873.
Y. Ma, X. Zhu, S. Z. R. Y. W. W. and Manocha, D. (2019).
Trafficpredict: Trajectory prediction for heteroge-
neous traffic-agents. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
6120–6127.
Z. Wang, H. Zhang, C. Q. B. L. Y. C. and Jiang, M. (2024).
A hybrid lstm network for long-range vehicle trajec-
tory prediction based on adaptive chirp mode decom-
position. IEEE Sensors Journal.
Multi-Agent Trajectory Prediction for Urban Environments with UAV Data Using Enhanced Temporal Kolmogorov-Arnold Networks with
Particle Swarm Optimization
597