
Bailey, T., Nieto, J., Guivant, J., Stevens, M., and Nebot,
E. (2006). Consistency of the ekf-slam algorithm. In
2006 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 3562–3568. IEEE.
Campos, C., Elvira, R., Rodr
´
ıguez, J. J. G., Montiel,
J. M., and Tard
´
os, J. D. (2021). Orb-slam3: An ac-
curate open-source library for visual, visual–inertial,
and multimap slam. IEEE Transactions on Robotics,
37(6):1874–1890.
Chen, W., Wang, X., Gao, S., Shang, G., Zhou, C., Li, Z.,
Xu, C., and Hu, K. (2023). Overview of multi-robot
collaborative slam from the perspective of data fusion.
Machines, 11(6):653.
Chen, X., L
¨
abe, T., Milioto, A., R
¨
ohling, T., Vysotska,
O., Haag, A., Behley, J., and Stachniss, C. (2021).
Overlapnet: Loop closing for lidar-based slam. arXiv
preprint arXiv:2105.11344.
Chetverikov, D., Svirko, D., Stepanov, D., and Krsek, P.
(2002). The trimmed iterative closest point algorithm.
In 2002 International Conference on Pattern Recogni-
tion, volume 3, pages 545–548. IEEE.
Coutsias, E. A., Seok, C., Jacobson, M. P., and Dill, K. A.
(2004). A kinematic view of loop closure. Journal of
computational chemistry, 25(4):510–528.
Cristofalo, E., Montijano, E., and Schwager, M. (2020).
Geod: Consensus-based geodesic distributed pose
graph optimization. arXiv preprint arXiv:2010.00156.
Davison (2003). Real-time simultaneous localisation and
mapping with a single camera. In Proceedings Ninth
IEEE International Conference on Computer Vision,
pages 1403–1410. IEEE.
Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O.
(2007). Monoslam: Real-time single camera slam.
IEEE transactions on pattern analysis and machine
intelligence, 29(6):1052–1067.
Diwan, T., Anirudh, G., and Tembhurne, J. V. (2023). Ob-
ject detection using yolo: Challenges, architectural
successors, datasets and applications. multimedia
Tools and Applications, 82(6):9243–9275.
Do, H. N., Jadaliha, M., Temel, M., and Choi, J. (2016).
Fully bayesian field slam using gaussian markov ran-
dom fields. Asian Journal of Control, 18(4):1175–
1188.
Gao, L., Battistelli, G., and Chisci, L. (2020). Random-
finite-set-based distributed multirobot slam. IEEE
Transactions on Robotics, 36(6):1758–1777.
Hu, D., Chen, Z., and Yin, F. (2023). Acoustic slam with
moving sound event based on auxiliary microphone
arrays. IEEE Transactions on Intelligent Transporta-
tion Systems.
Huang, S. and Dissanayake, G. (2016). A critique of current
developments in simultaneous localization and map-
ping. International Journal of Advanced Robotic Sys-
tems, 13(5):1729881416669482.
Kazerouni, I. A., Fitzgerald, L., Dooly, G., and Toal, D.
(2022). A survey of state-of-the-art on visual slam.
Expert Systems with Applications, 205:117734.
Klein, G. and Murray, D. (2007). Parallel tracking and
mapping for small ar workspaces. In 2007 6th IEEE
and ACM international symposium on mixed and aug-
mented reality, pages 225–234. IEEE.
Kudriashov, A., Buratowski, T., Giergiel, M., Małka, P.,
Kudriashov, A., Buratowski, T., Giergiel, M., and
Małka, P. (2020). Slam as probabilistic robotics
framework approach. SLAM Techniques Application
for Mobile Robot in Rough Terrain, pages 39–64.
Liu, S. and Zhu, J. (2023). Efficient map fusion for multiple
implicit slam agents. IEEE Transactions on Intelligent
Vehicles.
Montemerlo, M. (2002). Fastslam: A factored solution to
the simultaneous localization and mapping problem.
Proc. of AAAI02.
Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015).
Orb-slam: a versatile and accurate monocular slam
system. IEEE transactions on robotics, 31(5):1147–
1163.
Mur-Artal, R. and Tard
´
os, J. D. (2017). Orb-slam2:
An open-source slam system for monocular, stereo,
and rgb-d cameras. IEEE transactions on robotics,
33(5):1255–1262.
Nadiga, B., Jiang, C., and Livescu, D. (2019). Leveraging
bayesian analysis to improve accuracy of approximate
models. Journal of Computational Physics, 394:280–
297.
Nielsen, K. and Hendeby, G. (2022). Multi-hypothesis slam
for non-static environments with reoccurring land-
marks. IEEE Transactions on Intelligent Vehicles,
8(4):3191–3203.
Ranganathan, A. (2004). The levenberg-marquardt algo-
rithm. Tutoral on LM algorithm, 11(1):101–110.
Rodriguez, J. S. (2021). A comparison of an rgb-d cam-
era’s performance and a stereocamera in relation to
object recognition and spatial position determination.
ELCVIA: Electronic Letters on Computer Vision and
Image Analysis, 20(1):0016–27.
Samsuri, S. B., Zamzuri, H., Rahman, M. A. A., Mazlan,
S. A., and Rahman, A. (2015). Computational cost
analysis of extended kalman filter in simultaneous lo-
calization and mapping (ekf-slam) problem for au-
tonomous vehicle. ARPN journal of engineering and
applied sciences, 10(17):153–158.
Saputra, M. R. U., Markham, A., and Trigoni, N. (2018).
Visual slam and structure from motion in dynamic
environments: A survey. ACM Computing Surveys
(CSUR), 51(2):1–36.
Soares, J. C. V., Gattass, M., and Meggiolaro, M. A. (2021).
Crowd-slam: visual slam towards crowded environ-
ments using object detection. Journal of Intelligent &
Robotic Systems, 102(2):50.
Sooriyaarachchi, S. and Gamage, C. (2022). Elastic
orb: Non-rigid transformation based slam. In 2022
Moratuwa Engineering Research Conference (MER-
Con), pages 1–6. IEEE.
Stachniss, C., Leonard, J. J., and Thrun, S. (2016). Simulta-
neous Localization and Mapping. In Siciliano, B. and
Khatib, O., editors, Springer Handbook of Robotics,
pages 1153–1176. Springer International Publishing,
Cham. Series Title: Springer Handbooks.
Towards Ubiquitous Mapping and Localization for Dynamic Indoor Environments
547