
sample sizes and high dimensionality typical of RNA-
seq data by employing dimensionality reduction and
feature expansion techniques. Utilizing Ridge and
ElasticNet regression models, our iterative experi-
ments confirmed the effectiveness of our framework,
highlighting its potential in identifying critical genetic
targets linked to subretinal fibrosis.
The insights gained from our study have substan-
tial implications for genetic research and therapeutic
development. We offer new avenues for drug discov-
ery and improved treatment strategies for nAMD by
pinpointing key gene targets, ultimately aiming to en-
hance patient care. Our research underscores the im-
portance of integrating advanced ML techniques in
genomic studies, paving the way for future investiga-
tions that further connect genetic findings with clini-
cal applications.
REFERENCES
Ana, R. d., Gliszczy
´
nska, A., Sanchez-Lopez, E., Gar-
cia, M. L., Krambeck, K., Kovacevic, A., and Souto,
E. B. (2023). Precision Medicines for Retinal Lipid
Metabolism-Related Pathologies. Journal of Person-
alized Medicine, 13(4):635.
Andrews, T. S., Kiselev, V. Y., McCarthy, D., and Hemberg,
M. (2021). Tutorial: guidelines for the computational
analysis of single-cell RNA sequencing data. Nature
Protocols, 16(1):1–9.
Arumugam, K., Naved, M., Shinde, P. P., Leiva-Chauca, O.,
Huaman-Osorio, A., and Gonzales-Yanac, T. (2023).
Multiple disease prediction using machine learning al-
gorithms. Materials Today: Proceedings, 80:3682–
3685.
Bhatt, C. M., Patel, P., Ghetia, T., and Mazzeo, P. L.
(2023). Effective heart disease prediction using ma-
chine learning techniques. Algorithms, 16(2):88.
Blindness, G. (2021). Vision Impairment C, Vision Loss
Expert Group of the Global Burden of Disease S.
Causes of blindness and vision impairment in 2020
and trends over 30 years, and prevalence of avoidable
blindness in relation to VISION 2020: the Right to
Sight: an analysis for the Global Burden of Disease
Study. Lancet Glob Health, 9(2):e144–e160.
Bloch, S. B., Lund-Andersen, H., Sander, B., and Larsen,
M. (2013). Subfoveal fibrosis in eyes with neovascu-
lar age-related macular degeneration treated with in-
travitreal ranibizumab. American Journal of Ophthal-
mology, 156(1):116–124.
Bostanci, E., Kocak, E., Unal, M., Guzel, M. S., Acici, K.,
and Asuroglu, T. (2023). Machine learning analysis
of RNA-seq data for diagnostic and prognostic pre-
diction of colon cancer. Sensors, 23(6):3080.
Chandrasekhar, N. and Peddakrishna, S. (2023). Enhanc-
ing heart disease prediction accuracy through ma-
chine learning techniques and optimization. Pro-
cesses, 11(4):1210.
Chen, H., He, Y., Ji, J., and Shi, Y. (2019). A machine
learning method for identifying critical interactions
between gene pairs in Alzheimer’s disease prediction.
Frontiers in Neurology, 10:1162.
Chen, X., Zhang, B., Wang, T., Bonni, A., and Zhao, G.
(2020). Robust principal component analysis for accu-
rate outlier sample detection in RNA-Seq data. BMC
Bioinformatics, 21(1):269.
Cho, K. (2019). Emerging roles of complement protein C1q
in neurodegeneration. Aging and Disease, 10(3):652–
663.
Galvan, M. D., Greenlee-Wacker, M. C., and Bohlson, S. S.
(2012). C1q and phagocytosis: the perfect comple-
ment to a good meal. Journal of Leukocyte Biology,
92(3):489–497.
Gillies, M., Arnold, J., Bhandari, S., Essex, R. W., Young,
S., Squirrell, D., Nguyen, V., and Barthelmes, D.
(2020). Ten-year treatment outcomes of neovascular
age-related macular degeneration from two regions.
American Journal of Ophthalmology, 210:116–124.
Gupta, R., Kleinjans, J., and Caiment, F. (2021). Identify-
ing novel transcript biomarkers for hepatocellular car-
cinoma (HCC) using RNA-Seq datasets and machine
learning. BMC Cancer, 21(1):962.
Hasegawa, E., Sweigard, H., Husain, D., Olivares, A. M.,
Chang, B., Smith, K. E., Birsner, A. E., D’Amato,
R. J., Michaud, N. A., Han, Y., Vavvas, D. G., Miller,
J. W., Haider, N. B., and Connor, K. M. (2014).
Characterization of a spontaneous retinal neovascular
mouse model. PLoS One, 9(9):e106507.
Islam, M. A., Majumder, M. Z. H., and Hussein, M. A.
(2023). Chronic kidney disease prediction based on
machine learning algorithms. Journal of Pathology
Informatics, 14:100189.
Kauppinen, A., Paterno, J. J., Blasiak, J., Salminen, A.,
and Kaarniranta, K. (2016). Inflammation and its role
in age-related macular degeneration. Cellular and
Molecular Life Sciences, 73:1765–1786.
Khachigian, L. M., Liew, G., Teo, K. Y., Wong, T. Y.,
and Mitchell, P. (2023). Emerging therapeutic strate-
gies for unmet need in neovascular age-related macu-
lar degeneration. Journal of Translational Medicine,
21(1):133.
Khan, A., Qureshi, M., Daniyal, M., and Tawiah, K. (2023).
A novel study on machine learning algorithm-based
cardiovascular disease prediction. Health & Social
Care in the Community, 2023(1):1406060.
Lee, S., Jung, J., Park, I., Park, K., and Kim, D.-S. (2020). A
deep learning and similarity-based hierarchical clus-
tering approach for pathological stage prediction of
papillary renal cell carcinoma. Computational and
Structural Biotechnology Journal, 18:2639–2646.
Linder, M., Bennink, L., Foxton, R. H., Kirkness, M., and
Westenskow, P. D. (2024). In vivo monitoring of
active subretinal fibrosis in mice using collagen hy-
bridizing peptides. Lab Animal, 53(8):196–204.
Loaeza-Reyes, K. J., Zenteno, E., Moreno-Rodr
´
ıguez,
A., Torres-Rosas, R., Argueta-Figueroa, L., Salinas-
Mar
´
ın, R., Castillo-Real, L. M., Pina-Canseco, S., and
Cervera, Y. P. (2021). An overview of glycosylation
BIOINFORMATICS 2025 - 16th International Conference on Bioinformatics Models, Methods and Algorithms
636