
Figure 4: Example of the segmentation output for a test
image undergoing self-supervised learning. The tumour is
shown in red, while the background is in yellow.
Hypervascularized tissue is in blue and normal tissue is in
green.
dataset. Namely, we researched a self-supervised
algorithm to train an innovative segmentation
architecture. The proposed methodology allows the
end-to-end segmentation of such images, targeting
real-time processing to be employed during open
craniotomy in surgery.
This innovative approach improves the gold-
standard HELICoiD pipeline and it offers competitive
results in terms of classification. We measured
competitive inference results for the identification of
unhealthy tissue, namely exceeding 90% in
specificity and recall. Nonetheless, the framework
exhibits poor performance when the architecture
classifies normal and background image portions as
tumour.
On the other hand, this is an open research topic
which we aim to improve and clarify in further works.
We believe the proposed SSL methodology could
refine medical HS image segmentation, thus brushing
up state of the art computer-aided diagnostic systems.
A further improvement will be the evaluation of our
approach considering broader datasets, including a
higher number of images, potentially coming from
different brain tumours, thus obtaining a general
diagnostic tool.
The proposed methodology could enhance
medical hyperspectral research overcoming labelling
and dataset size challenges.
ACKNOWLEDGEMENTS
This work was supported in part by the Spanish
Government and European Union (FEDER funds) in
the context of TALENT-HExPERIA project, under
the contract PID2020-116417RB-C42
AEI/10.13039/501100011033.
REFERENCES
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.
L., Soerjomataram, I., & Jemal, A. (2024). Global
cancer statistics 2022: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in
185 countries. CA: A Cancer Journal for Clinicians,
74(3), 229–263. doi: 10.3322/caac.21834
Collins, T., Maktabi, M., Barberio, M., Bencteux, V.,
Jansen-Winkeln, B., Chalopin, C., Marescaux, J.,
Hostettler, A., Diana, M., & Gockel, I. (2021).
Automatic Recognition of Colon and Esophagogastric
Cancer with Machine Learning and Hyperspectral
Imaging. Diagnostics, 11(10), 1810. doi:
10.3390/diagnostics11101810
Fabelo, H., Ortega, S., Kabwama, S., Callico, G. M.,
Bulters, D., Szolna, A., Pineiro, J. F., & Sarmiento, R.
(2016). HELICoiD project: a new use of hyperspectral
imaging for brain cancer detection in real-time during
neurosurgical operations (D. P. Bannon, Ed.; p.
986002). doi: 10.1117/12.2223075
Fabelo, H., Ortega, S., Lazcano, R., Madroñal, D., M.
Callicó, G., Juárez, E., Salvador, R., Bulters, D.,
Bulstrode, H., Szolna, A., Piñeiro, J., Sosa, C., J.
O’Shanahan, A., Bisshopp, S., Hernández, M., Morera,
J., Ravi, D., Kiran, B., Vega, A., … Sarmiento, R.
(2018). An Intraoperative Visualization System Using
Hyperspectral Imaging to Aid in Brain Tumor
Delineation. Sensors, 18(2), 430. doi:
10.3390/s18020430
Fabelo, H., Ortega, S., Szolna, A., Bulters, D., Pineiro, J.
F., Kabwama, S., J-O’Shanahan, A., Bulstrode, H.,
Bisshopp, S., Kiran, B. R., Ravi, D., Lazcano, R.,
Madronal, D., Sosa, C., Espino, C., Marquez, M., De
La Luz Plaza, M., Camacho, R., Carrera, D., …
Sarmiento, R. (2019). In-Vivo Hyperspectral Human
Brain Image Database for Brain Cancer Detection.
IEEE Access, 7, 39098–39116. doi:
10.1109/ACCESS.2019.2904788
Florimbi, G., Fabelo, H., Torti, E., Ortega, S., Marrero-
Martin, M., Callico, G. M., Danese, G., & Leporati, F.
(2020). Towards Real-Time Computing of
Intraoperative Hyperspectral Imaging for Brain Cancer
Detection Using Multi-GPU Platforms. IEEE Access,
8, 8485–8501. doi: 10.1109/ACCESS.2020.2963939
Girardi, F., Matz, M., Stiller, C., You, H., Marcos Gragera,
R., Valkov, M. Y., Bulliard, J.-L., De, P., Morrison, D.,
Wanner, M., O’Brian, D. K., Saint-Jacques, N.,
Coleman, M. P., Allemani, C., Bouzbid, S., Hamdi-
Chérif, M., Kara, L., Meguenni, K., Regagba, D., …
Lewis, C. (2023). Global survival trends for brain
tumors, by histology: analysis of individual records for
556,237 adults diagnosed in 59 countries during 2000–
2014 (CONCORD-3). Neuro-Oncology, 25(3), 580–
592. doi: 10.1093/neuonc/noac217
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
638