
ticularly in cases with limited real images. Notably,
segmentation accuracy improved markedly in cases
where initial segmentation accuracy was lower, un-
derscoring the value of synthetic images for segmen-
tation model training in achieving robust model per-
formance.
REFERENCES
Denker, A., Schmidt, M., Leuschner, J., and Maass, P.
(2021). Conditional invertible neural networks for
medical imaging.
Dhariwal, P. and Nichol, A. (2021). Diffusion models beat
gans on image synthesis. Advances in Neural Infor-
mation Processing Systems, 34:8780–8794.
Eschweiler, D., Yilmaz, R., Baumann, M., Laube, I.,
Roy, R., Jose, A., Br
¨
uckner, D., and Stegmaier,
J. (2024). Denoising diffusion probabilistic mod-
els for generation of realistic fully-annotated mi-
croscopy image datasets. PLOS Computational Biol-
ogy, 20(2):e1011890.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. Advances
in Neural Information Processing Systems, 27.
Hajij, M., Zamzmi, G., Paul, R., and Thukar, L. (2022).
Normalizing flow for synthetic medical images gener-
ation. In 2022 IEEE Healthcare Innovations and Point
of Care Technologies (HI-POCT), pages 46–49.
He, Y. (2021). Retinal OCT image analysis using deep
learning. PhD thesis, Johns Hopkins University.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. (2017). Gans trained by a two time-
scale update rule converge to a local nash equilibrium.
Advances in neural information processing systems,
30.
Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion
probabilistic models. Advances in neural information
processing systems, 33:6840–6851.
Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin,
I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M.,
Kolesnikov, A., et al. (2020). The open images dataset
v4: Unified image classification, object detection, and
visual relationship detection at scale. International
Journal of Computer Vision, 128(7):1956–1981.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Com-
puter Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part V 13, pages 740–755. Springer.
Mukherkjee, D., Saha, P., Kaplun, D., Sinitca, A., and
Sarkar, R. (2022). Brain tumor image generation us-
ing an aggregation of gan models with style transfer.
Scientific reports, 12(1):9141.
M
¨
uller-Franzes, G., Niehues, J. M., Khader, F., Arasteh,
S. T., Haarburger, C., Kuhl, C., Wang, T., Han, T.,
Nolte, T., Nebelung, S., et al. (2023). A multimodal
comparison of latent denoising diffusion probabilistic
models and generative adversarial networks for medi-
cal image synthesis. Scientific Reports, 13(1):12098.
Parmar, G., Zhang, R., and Zhu, J.-Y. (2022). On aliased
resizing and surprising subtleties in gan evaluation. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11410–
11420.
Rezende, D. and Mohamed, S. (2015). Variational inference
with normalizing flows. In International conference
on machine learning, pages 1530–1538. PMLR.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pages 234–241.
Springer.
Schmitt, J. M. (1999). Optical coherence tomography (oct):
a review. IEEE Journal of selected topics in quantum
electronics, 5(4):1205–1215.
Sigler, E., Randolph, J., Calzada, J., and Charles, S. (2014).
Smoking and choroidal thickness in patients over 65
with early-atrophic age-related macular degeneration
and normals. Eye, 28(7):838–846.
Wang, S., Li, C., Wang, R., Liu, Z., Wang, M., Tan, H.,
Wu, Y., Liu, X., Sun, H., Yang, R., et al. (2021).
Annotation-efficient deep learning for automatic med-
ical image segmentation. Nature communications,
12(1):5915.
Wang, Z. and Bovik, A. C. (2009). Mean squared error:
Love it or leave it? a new look at signal fidelity mea-
sures. IEEE signal processing magazine, 26(1):98–
117.
Wu, Y., He, W., Eschweiler, D., Dou, N., Fan, Z., Mi, S.,
Walter, P., and Stegmaier, J. (2024). Retinal oct syn-
thesis with denoising diffusion probabilistic models
for layer segmentation. In 2024 IEEE International
Symposium on Biomedical Imaging (ISBI), pages 1–5.
IEEE.
Xiao, Z., Kreis, K., and Vahdat, A. (2021). Tackling the
generative learning trilemma with denoising diffusion
gans. arXiv preprint arXiv:2112.07804.
Ye, X., He, S., Zhong, X., Yu, J., Yang, S., Shen, Y., Chen,
Y., Wang, Y., Huang, X., and Shen, L. (2023). Oimhs:
An optical coherence tomography image dataset based
on macular hole manual segmentation. Scientific
Data, 10(1):769.
Yilmaz, R., Eschweiler, D., and Stegmaier, J. (2024). An-
notated biomedical video generation using denoising
diffusion probabilistic models and flow fields. In In-
ternational Workshop on Simulation and Synthesis in
Medical Imaging, pages 197–207.
Zheng, C., Xie, X., Zhou, K., Chen, B., Chen, J., Ye, H.,
Li, W., Qiao, T., Gao, S., Yang, J., et al. (2020).
Assessment of generative adversarial networks model
for synthetic optical coherence tomography images
of retinal disorders. Translational Vision Science &
Technology, 9(2):29–29.
Evaluation of OCT Image Synthesis for Choroidal and Retinal Layer Segmentation Using Denoising Diffusion Probabilistic Models
347