
REFERENCES
Beer, F. and Buehler, U. (2017). Feature selection for flow-
based intrusion detection using rough set theory. In
Proc. Int. Conf. on Networking, Sensing and Control,
pages 617–624. IEEE.
Buedi, E. D., Ghorbani, A. A., Dadkhah, S., and Ferreira,
R. L. (2024). Enhancing EV charging station security
using a multi-dimensional dataset: CICEVSE2024. In
Ferrara, A. L. and Krishnan, R., editors, Data and Ap-
plications Security and Privacy XXXVIII, pages 171–
190, Cham. Springer Nature Switzerland.
Catillo, M., Del Vecchio, A., Ocone, L., Pecchia, A., and
Villano, U. (2021a). USB-IDS-1: a public multilayer
dataset of labeled network flows for IDS evaluation.
In 2021 51st IEEE/IFIP Int. Conf. on Dependable Sys-
tems and Networks Workshops (DSN-W), pages 1–6.
Catillo, M., Pecchia, A., Rak, M., and Villano, U. (2021b).
Demystifying the role of public intrusion datasets: A
replication study of DoS network traffic data. Com-
puters and Security, 108:102341.
Catillo, M., Pecchia, A., Repola, A., and Villano, U. (2024).
Towards realistic problem-space adversarial attacks
against machine learning in network intrusion detec-
tion. In Proc. of the 19th Int. Conf. on Availability,
Reliability and Security, ARES ’24. ACM.
Dadkhah, S., Neto, E. C. P., Ferreira, R., Molokwu,
R. C., Sadeghi, S., and Ghorbani, A. A. (2024). CI-
CIoMT2024: A benchmark dataset for multi-protocol
security assessment in IoMT. Internet of Things,
28:101351.
Draper-Gil., G., Lashkari., A. H., Mamun., M. S. I., and A.
Ghorbani., A. (2016). Characterization of encrypted
and VPN traffic using time-related features. In Proc.
of the 2nd Int. Conf. on Information Systems Security
and Privacy - ICISSP, pages 407–414. SciTePress.
Engelen, G., Rimmer, V., and Joosen, W. (2021). Trou-
bleshooting an intrusion detection dataset: the CI-
CIDS2017 case study. In 2021 IEEE Security and Pri-
vacy Workshops (SPW), pages 7–12.
Fulkerson, J. (2017). 9 sets of sample tc com-
mands to simulate common network scenarios.
https://www.badunetworks.com/9-sets-of-sample-tc-
commands-to-simulate-common-network-scenarios/.
Accessed: 2024-03-30.
Kim, Y., Hakak, S., and Ghorbani, A. (2023). DDoS Attack
Dataset (CICEV2023) against EV Authentication in
Charging Infrastructure . In 2023 20th Int. Conf. on
Privacy, Security and Trust (PST), pages 1–9. IEEE.
Kushwaha, P., Buckchash, H., and Raman, B. (2017).
Anomaly based intrusion detection using filter based
feature selection on KDD-CUP 99. In Proc. TENCON
IEEE Region 10 Conference, pages 839–844. IEEE.
Lanvin, M., Gimenez, P.-F., Han, Y., Majorczyk, F., M
´
e,
L., and Totel,
´
E. (2023). Errors in the CICIDS2017
dataset and the significant differences in detection per-
formances it makes. In Kallel, S. and et al., editors,
Risks and Security of Internet and Systems, pages 18–
33, Cham. Springer Nature Switzerland.
Lashkari, A. H., Gil, G. D., Mamun, M. S. I., and Ghor-
bani, A. A. (2017). Characterization of Tor traffic us-
ing time based features. In Proc. International Con-
ference on Information Systems Security and Privacy,
pages 253–262. SciTePress.
Liu, L., Engelen, G., Lynar, T., Essam, D., and Joosen, W.
(2022). Error prevalence in NIDS datasets: A case
study on CIC-IDS-2017 and CSE-CIC-IDS-2018. In
2022 IEEE Conference on Communications and Net-
work Security (CNS), pages 254–262.
McHugh, J. (2000). Testing Intrusion detection systems: a
critique of the 1998 and 1999 DARPA intrusion de-
tection system evaluations as performed by Lincoln
Laboratory. ACM Transactions on Information and
System Security, 3(4):262–294.
Moustafa, N. and Slay, J. (2015). UNSW-NB15: a compre-
hensive data set for network intrusion detection sys-
tems (UNSW-NB15 network data set). In Proc. Mil-
itary Communications and Information Systems Con-
ference, pages 1–6. IEEE.
Neto, E. C. P., Dadkhah, S., Ferreira, R., Zohourian, A., Lu,
R., and Ghorbani, A. A. (2023). CICIoT2023: A real-
time dataset and benchmark for large-scale attacks in
IoT environment. Sensors, 23(13).
Neto, E. C. P., Taslimasa, H., Dadkhah, S., Iqbal, S.,
Xiong, P., Rahman, T., and Ghorbani, A. A. (2024).
CICIoV2024: Advancing realistic IDS approaches
against DoS and spoofing attack in IoV CAN bus. In-
ternet of Things, 26:101209.
¨
Ozg
¨
ur, A. and Erdem, H. (2016). A review of KDD99
dataset usage in intrusion detection and machine
learning between 2010 and 2015. PeerJ Preprints.
Ring, M., Wunderlich, S., Scheuring, D., Landes, D., and
Hotho, A. (2019). A survey of network-based in-
trusion detection data sets. Computers and Security,
86:147–167.
Rosay, A., Carlier, F., Cheval, E., and Leorux, P. (2022).
From CIC-IDS2017 to LYCOS-IDS2017: A corrected
dataset for better performance. In IEEE/WIC/ACM
Int. Conf. on Web Intelligence and Intelligent Agent
Technology, WI-IAT ’21, page 570–575. ACM.
Sharafaldin, I., Lashkari, A. H., and Ghorbani., A. A.
(2018). Toward generating a new intrusion detection
dataset and intrusion traffic characterization. In Proc.
Int. Conf. on Information Systems Security and Pri-
vacy, pages 108–116. SciTePress.
Silva, J. V. V., Lopez, M. A., and Mattos, D. M. F.
(2020). Attackers are not stealthy: Statistical anal-
ysis of the well-known and infamous KDD network
security dataset. In Proc. Conf. on Cloud and Internet
of Things, pages 1–8. IEEE.
Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A.
(2009). A detailed analysis of the KDD-CUP’99 data
set. In Proc. Symp. on Computational Intelligence for
Security and Defense Applications, pages 1–6. IEEE.
USB-IDS-TC: A Flow-Based Intrusion Detection Dataset of DoS Attacks in Different Network Scenarios
309