
Figure 8: The reconstruction results of real-world objects. The leftmost is input single-shot images. The color of the results
is shown based on the normal XYZ component.
future work is to extend our method to the specular-
dominant surfaces. Another limitation arises from
overly complex surfaces, which disrupt the azimuthal
similarity of neighboring pixels and create extensive
cast shadows.
ACKNOWLEDGEMENTS
This work was supported by JSPS KAKENHI Grant
Numbers JP20H00612 and JP22K17914.
REFERENCES
Ackermann, J., Goesele, M., et al. (2015). A survey of pho-
tometric stereo techniques. Foundations and Trends®
in Computer Graphics and Vision, 9(3-4):149–254.
Anderson, R., Stenger, B., and Cipolla, R. (2011). Color
photometric stereo for multicolored surfaces. In
ICCV, pages 2182–2189. IEEE.
Atkinson, G. A. and Hancock, E. R. (2006). Recovery of
surface orientation from diffuse polarization. IEEE
TIP, 15(6):1653–1664.
Ba, Y., Gilbert, A., Wang, F., Yang, J., Chen, R., Wang, Y.,
Yan, L., Shi, B., and Kadambi, A. (2020). Deep shape
from polarization. In ECCV, pages 554–571.
Chakrabarti, A. and Sunkavalli, K. (2016). Single-image
rgb photometric stereo with spatially-varying albedo.
In 3DV, pages 258–266. IEEE.
Deschaintre, V., Lin, Y., and Ghosh, A. (2021). Deep polar-
ization imaging for 3d shape and svbrdf acquisition.
In CVPR, pages 15567–15576.
Guo, H., Okura, F., Shi, B., Funatomi, T., Mukaigawa, Y.,
and Matsushita, Y. (2021). Multispectral photomet-
ric stereo for spatially-varying spectral reflectances: A
well posed problem? In CVPR, pages 963–971.
Huynh, C. P., Robles-Kelly, A., and Hancock, E. (2010).
Shape and refractive index recovery from single-view
polarisation images. In CVPR, pages 1229–1236.
Hwang, I., Jeon, D. S., Munoz, A., Gutierrez, D., Tong, X.,
and Kim, M. H. (2022). Sparse ellipsometry: portable
acquisition of polarimetric svbrdf and shape with un-
structured flash photography. ACM TOG, 41(4):1–14.
Ikeuchi, K. and Horn, B. K. (1981). Numerical shape from
shading and occluding boundaries. Artificial intelli-
gence, 17(1-3):141–184.
Kadambi, A., Taamazyan, V., Shi, B., and Raskar, R.
(2015). Polarized 3d: High-quality depth sensing with
polarization cues. In ICCV, pages 3370–3378.
Kriegman, D. J. and Belhumeur, P. N. (2001). What shad-
ows reveal about object structure. JOSA, 18(8):1804–
1813.
Lei, C., Qi, C., Xie, J., Fan, N., Koltun, V., and Chen, Q.
(2022). Shape from polarization for complex scenes
in the wild. In CVPR, pages 12622–12631.
Mahmoud, A. H., El-Melegy, M. T., and Farag, A. A.
(2012). Direct method for shape recovery from polar-
ization and shading. In ICIP, pages 1769–1772. IEEE.
Miyazaki, D., Tan, R. T., Hara, K., and Ikeuchi, K. (2003).
Polarization-based inverse rendering from a single
view. In ICCV, pages 982–982.
Ozawa, K., Sato, I., and Yamaguchi, M. (2018). Single
color image photometric stereo for multi-colored sur-
faces. Computer Vision and Image Understanding,
171:140–149.
Pistellato, M. and Bergamasco, F. (2024). A geometric
model for polarization imaging on projective cameras.
IJCV, pages 1–15.
Rahmann, S. and Canterakis, N. (2001). Reconstruction
of specular surfaces using polarization imaging. In
CVPR, volume 1, pages I–I. IEEE.
Smith, W. A., Ramamoorthi, R., and Tozza, S. (2016). Lin-
ear depth estimation from an uncalibrated, monoc-
ular polarisation image. In ECCV, pages 109–125.
Springer.
Smith, W. A., Ramamoorthi, R., and Tozza, S. (2018).
Height-from-polarisation with unknown lighting or
albedo. IEEE TPAMI, 41(12):2875–2888.
Thanh, T. N., Nagahara, H., and ichiro Taniguchi, R.
(2015). Shape and light directions from shading and
polarization. In CVPR, pages 2310–2318.
Woodham, R. J. (1980). Photometric method for determin-
ing surface orientation from multiple images. Optical
engineering, 19(1):139–144.
Zhang, R., Tsai, P.-S., Cryer, J. E., and Shah, M.
(1999). Shape-from-shading: a survey. IEEE TPAMI,
21(8):690–706.
Attached Shadow Constrained Shape from Polarization
647