
Hajihosseinlou, M., Maghsoudi, A., and Ghezelbash, R.
(2024). A comprehensive evaluation of optics, gmm
and k-means clustering methodologies for geochem-
ical anomaly detection connected with sample catch-
ment basins. Geochemistry, page 126094.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep resid-
ual learning for image recognition. 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Huang, X., Ma, T., Liu, C., and Liu, S. (2023). Grit-dbscan:
A spatial clustering algorithm for very large databases.
Pattern Recognition, 142:109658.
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija,
B., and Heming, J. (2023). K-means clustering al-
gorithms: A comprehensive review, variants analysis,
and advances in the era of big data. Information Sci-
ences, 622:178–210.
Johnson, M. E., Moore, L. M., and Ylvisaker, D. (1990).
Minimax and maximin distance designs. Journal of
statistical planning and inference, 26(2):131–148.
Jos
´
e-Garc
´
ıa, A. and G
´
omez-Flores, W. (2016). Auto-
matic clustering using nature-inspired metaheuristics:
A survey. Applied Soft Computing, 41:192–213.
Liu, H., Chen, J., Dy, J., and Fu, Y. (2023). Transform-
ing complex problems into k-means solutions. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 45(7):9149–9168.
Morii, F. and Kurahashi, K. (2006). Clustering by the k-
means algorithm using a split and merge procedure.
In SCIS & ISIS SCIS & ISIS 2006, pages 1767–1770.
Japan Society for Fuzzy Theory and Intelligent Infor-
matics.
Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath,
B. S. (2011). Malware images: visualization and au-
tomatic classification. In Visualization for Computer
Security.
Nie, F., Wang, C.-L., and Li, X. (2019). K-multiple-means:
A multiple-means clustering method with specified k
clusters. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery &
data mining, pages 959–967.
Nie, F., Xue, J., Wu, D., Wang, R., Li, H., and Li, X.
(2022). Coordinate descent method for kk-means.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(5):2371–2385.
Noever, D. A. and Noever, S. E. M. (2021). Virus-mnist: A
benchmark malware dataset. ArXiv, abs/2103.00602.
Pelleg, D. and Moore, A. W. (2000). X-means: Extend-
ing k-means with efficient estimation of the number
of clusters. In Proceedings of the Seventeenth In-
ternational Conference on Machine Learning, ICML
’00, page 727–734, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.
Ronen, R. (2018). Microsoft malware classification chal-
lenge. arXiv preprint arXiv:1802.10135.
Rykov, A., de Amorim, R. C., Makarenkov, V., and Mirkin,
B. (2024). Inertia-based indices to determine the num-
ber of clusters in k-means: An experimental evalua-
tion. IEEE Access, 12:11761–11773.
Sary, R. A., Satyahadewi, N., and Andani, W. (2024). Ap-
plication of k-means++ with dunn index validation of
grouping west kalimantan region based on crime vul-
nerability. BAREKENG: Jurnal Ilmu Matematika dan
Terapan, 18(4):2283–2292.
Sowan, B., Hong, T.-P., Al-Qerem, A., Alauthman, M., and
Matar, N. (2023). Ensembling validation indices to
estimate the optimal number of clusters. Applied In-
telligence, 53(9):9933–9957.
Teklehaymanot, F. K., Muma, M., and Zoubir, A. M.
(2018). Bayesian cluster enumeration criterion for
unsupervised learning. IEEE Transactions on Signal
Processing, 66(20):5392–5406.
Yang, M.-S. and Hussain, I. (2023). Unsupervised multi-
view k-means clustering algorithm. IEEE Access,
11:13574–13593.
Zhao, Z., Guo, S., Xu, Q., and Ban, T. (2008). G-means: a
clustering algorithm for intrusion detection. In Inter-
national Conference on Neural Information Process-
ing, pages 563–570. Springer.
ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy
584