
Cao, Y., Xu, X., and Shen, W. (2023). Complementary
Pseudo Multimodal Feature for Point Cloud Anomaly
Detection. arXiv:2303.13194 [cs].
Chen, R., Xie, G., Liu, J., Wang, J., Luo, Z., Wang, J., and
Zheng, F. (2023). Easynet: An easy network for 3d
industrial anomaly detection.
Chu, Y.-M., Chieh, L., Hsieh, T.-I., Chen, H.-T., and Liu,
T.-L. (2023). Shape-Guided Dual-Memory Learning
for 3D Anomaly Detection.
Deecke, L., Vandermeulen, R., Ruff, L., Mandt, S., and
Kloft, M. (2019). Image anomaly detection with
generative adversarial networks. In Berlingerio, M.,
Bonchi, F., G
¨
artner, T., Hurley, N., and Ifrim, G., ed-
itors, Machine Learning and Knowledge Discovery in
Databases, pages 3–17, Cham. Springer International
Publishing.
Fan, H., Su, H., and Guibas, L. J. (2017). A point set gener-
ation network for 3d object reconstruction from a sin-
gle image. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 605–
613.
Gong, D., Liu, L., Le, V., Saha, B., Mansour, M. R.,
Venkatesh, S., and Hengel, A. v. d. (2019). Mem-
orizing Normality to Detect Anomaly: Memory-
Augmented Deep Autoencoder for Unsupervised
Anomaly Detection. pages 1705–1714.
Gu, Z., Zhang, J., Liu, L., Chen, X., Peng, J., Gan, Z., Jiang,
G., Shu, A., Wang, Y., and Ma, L. (2024). Rethink-
ing reverse distillation for multi-modal anomaly de-
tection. In AAAI Conference on Artificial Intelligence.
Han, M., Wang, L., Xiao, L., Zhang, H., Zhang, C., Xu, X.,
and Zhu, J. (2023). Quickfps: Architecture and algo-
rithm co-design for farthest point sampling in large-
scale point clouds. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems.
Horwitz, E. and Hoshen, Y. (2022). Back to the Feature:
Classical 3D Features are (Almost) All You Need for
3D Anomaly Detection. arXiv:2203.05550 [cs].
Hyun, J., Kim, S., Jeon, G., Kim, S. H., Bae, K., and
Kang, B. J. (2024). Reconpatch: Contrastive patch
representation learning for industrial anomaly detec-
tion. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV),
pages 2052–2061.
Kim, K. H., Shim, S., Lim, Y., Jeon, J., Choi, J., Kim, B.,
and Yoon, A. S. (2019). Rapp: Novelty detection with
reconstruction along projection pathway. In Interna-
tional Conference on Learning Representations.
Li, W., Xu, X., Gu, Y., Zheng, B., Gao, S., and Wu,
Y. (2023). Towards Scalable 3D Anomaly Detec-
tion and Localization: A Benchmark via 3D Anomaly
Synthesis and A Self-Supervised Learning Network.
arXiv:2311.14897 [cs].
Li, Y., Yang, W., and Fei, B. (2024a). 3dmambacomplete:
Exploring structured state space model for point cloud
completion.
Li, Z., Ge, Y., Wang, X., and Meng, L. (2024b). 3d in-
dustrial anomaly detection via dual reconstruction net-
work. Applied Intelligence, pages 1–15.
Liu, J., Xie, G., Chen, R., Li, X., Wang, J., Liu, Y., Wang,
C., and Zheng, F. (2023). Real3D-AD: A Dataset of
Point Cloud Anomaly Detection. arXiv:2309.13226
[cs].
Pang, Y., Wang, W., Tay, F. E. H., Liu, W., Tian, Y., and
Yuan, L. (2022). Masked autoencoders for point cloud
self-supervised learning. In Avidan, S., Brostow, G.,
Ciss
´
e, M., Farinella, G. M., and Hassner, T., edi-
tors, Computer Vision – ECCV 2022, pages 604–621,
Cham. Springer Nature Switzerland.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet:
Deep learning on point sets for 3d classification and
segmentation.
Rezende, D. and Mohamed, S. (2015). Variational inference
with normalizing flows. In International conference
on machine learning, pages 1530–1538. PMLR.
Rudolph, M., Wandt, B., and Rosenhahn, B. (2021). Same
same but differnet: Semi-supervised defect detec-
tion with normalizing flows. In Proceedings of
the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 1907–1916.
Tu, Y., Zhang, B., Liu, L., Li, Y., Xu, C., Zhang, J., Wang,
Y., Wang, C., and Zhao, C. R. (2024). Self-supervised
feature adaptation for 3d industrial anomaly detection.
arXiv preprint arXiv:2401.03145.
Wang, Y., Peng, J., Zhang, J., Yi, R., Wang, Y., and Wang,
C. (2023). Multimodal Industrial Anomaly Detection
via Hybrid Fusion. pages 8032–8041.
Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. (2019). Dynamic graph cnn
for learning on point clouds. ACM Transactions on
Graphics (tog), 38(5):1–12.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visi-
bility to structural similarity. IEEE transactions on
image processing, 13(4):600–612.
Yang, Y., Feng, C., Shen, Y., and Tian, D. (2018). Fold-
ingnet: Point cloud auto-encoder via deep grid defor-
mation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Yuan, W., Khot, T., Held, D., Mertz, C., and Hebert, M.
(2018). Pcn: Point completion network. In 2018 Inter-
national Conference on 3D Vision (3DV), pages 728–
737.
Zavrtanik, V., Kristan, M., and Sko
ˇ
caj, D. (2024). Cheating
depth: Enhancing 3d surface anomaly detection via
depth simulation. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion (WACV), pages 2164–2172.
Zavrtanik, V., Kristan, M., and Sko
ˇ
caj, D. (2021). DRAEM
- A Discriminatively Trained Reconstruction Embed-
ding for Surface Anomaly Detection. pages 8330–
8339.
Zhou, Z., Wang, L., Fang, N., Wang, Z., Qiu, L., and Zhang,
S. (2024). R3D-AD: Reconstruction via Diffusion for
3D Anomaly Detection. arXiv:2407.10862 [cs].
Zou, Y., Jeong, J., Pemula, L., Zhang, D., and Dabeer,
O. (2022). Spot-the-difference self-supervised pre-
training for anomaly detection and segmentation. In
European Conference on Computer Vision, pages
392–408. Springer.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
724