
REFERENCES
Attardi, G. (2015). Wikiextractor. https://github.com/
attardi/wikiextractor.
Bryant, C., Felice, M., Andersen, Ø. E., and Briscoe, T.
(2019). The BEA-2019 shared task on grammatical
error correction. In Yannakoudakis, H., Kochmar, E.,
Leacock, C., Madnani, N., Pil
´
an, I., and Zesch, T.,
editors, Proceedings of the Fourteenth Workshop on
Innovative Use of NLP for Building Educational Ap-
plications, BEA@ACL 2019, Florence, Italy, August
2, 2019, pages 52–75. Association for Computational
Linguistics.
Bryant, C., Yuan, Z., Qorib, M. R., Cao, H., Ng, H. T., and
Briscoe, T. (2023). Grammatical error correction: A
survey of the state of the art. Comput. Linguistics,
49(3):643–701.
Coyne, S., Sakaguchi, K., Galvan-Sosa, D., Zock, M., and
Inui, K. (2023). Analyzing the performance of gpt-3.5
and gpt-4 in grammatical error correction.
Dahlmeier, D., Ng, H. T., and Wu, S. M. (2013). Building
a large annotated corpus of learner english: The NUS
corpus of learner english. In Tetreault, J. R., Burstein,
J., and Leacock, C., editors, Proceedings of the Eighth
Workshop on Innovative Use of NLP for Building Edu-
cational Applications, BEA@NAACL-HLT 2013, June
13, 2013, Atlanta, Georgia, USA, pages 22–31. The
Association for Computer Linguistics.
Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019).
BERT: pre-training of deep bidirectional transformers
for language understanding. In Burstein, J., Doran,
C., and Solorio, T., editors, Proceedings of the 2019
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 4171–4186. Association for Computa-
tional Linguistics.
Etoori, P., Chinnakotla, M., and Mamidi, R. (2018). Au-
tomatic spelling correction for resource-scarce lan-
guages using deep learning. In Shwartz, V., Tabas-
sum, J., Voigt, R., Che, W., de Marneffe, M., and
Nissim, M., editors, Proceedings of ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Student Research
Workshop, pages 146–152. Association for Computa-
tional Linguistics.
Freund, Y. (1990). Boosting a weak learning algorithm
by majority. In Fulk, M. A. and Case, J., editors,
Proceedings of the Third Annual Workshop on Com-
putational Learning Theory, COLT 1990, University
of Rochester, Rochester, NY, USA, August 6-8, 1990,
pages 202–216. Morgan Kaufmann.
Hl
´
adek, D., Sta
ˇ
s, J., and Pleva, M. (2020). Survey of auto-
matic spelling correction. Electronics, 9(10):1670.
Kiyono, S., Suzuki, J., Mita, M., Mizumoto, T., and Inui, K.
(2019). An empirical study of incorporating pseudo
data into grammatical error correction. In Inui, K.,
Jiang, J., Ng, V., and Wan, X., editors, Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 1236–1242. Association
for Computational Linguistics.
Li, R., Wang, C., Zha, Y., Yu, Y., Guo, S., Wang, Q.,
Liu, Y., and Lin, H. (2019). The LAIX systems in
the BEA-2019 GEC shared task. In Yannakoudakis,
H., Kochmar, E., Leacock, C., Madnani, N., Pil
´
an, I.,
and Zesch, T., editors, Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications, BEA@ACL 2019, Florence,
Italy, August 2, 2019, pages 159–167. Association for
Computational Linguistics.
Masanti, C., Witschel, H.-F., and Riesen, K. (2023). Novel
benchmark data set for automatic error detection and
correction. In International Conference on Applica-
tions of Natural Language to Information Systems,
pages 511–521. Springer.
Moslem, Y., Haque, R., Kelleher, J. D., and Way, A.
(2023). Adaptive machine translation with large lan-
guage models. In Nurminen, M., Brenner, J., Ko-
ponen, M., Latomaa, S., Mikhailov, M., Schierl, F.,
Ranasinghe, T., Vanmassenhove, E., Vidal, S. A.,
Aranberri, N., Nunziatini, M., Escart
´
ın, C. P., For-
cada, M. L., Popovic, M., Scarton, C., and Moniz,
H., editors, Proceedings of the 24th Annual Confer-
ence of the European Association for Machine Trans-
lation, EAMT 2023, Tampere, Finland, 12-15 June
2023, pages 227–237. European Association for Ma-
chine Translation.
Pirinen, T. A. and Lind
´
en, K. (2014). State-of-the-art
in weighted finite-state spell-checking. In Gelbukh,
A. F., editor, Computational Linguistics and Intelli-
gent Text Processing - 15th International Conference,
CICLing 2014, Kathmandu, Nepal, April 6-12, 2014,
Proceedings, Part II, volume 8404 of Lecture Notes in
Computer Science, pages 519–532. Springer.
Pitis, S., Zhang, M. R., Wang, A., and Ba, J. (2023).
Boosted prompt ensembles for large language models.
CoRR, abs/2304.05970.
Rei, M., Felice, M., Yuan, Z., and Briscoe, T. (2017). Ar-
tificial error generation with machine translation and
syntactic patterns. In Tetreault, J. R., Burstein, J., Lea-
cock, C., and Yannakoudakis, H., editors, Proceedings
of the 12th Workshop on Innovative Use of NLP for
Building Educational Applications, BEA@EMNLP
2017, Copenhagen, Denmark, September 8, 2017,
pages 287–292. Association for Computational Lin-
guistics.
Schapire, R. E. (1990). The strength of weak learnability.
Mach. Learn., 5:197–227.
Tan, M., Chen, D., Li, Z., and Wang, P. (2020). Spelling er-
ror correction with bert based on character-phonetic.
In 2020 IEEE 6th International Conference on Com-
puter and Communications (ICCC), pages 1146–
1150. IEEE.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. In Guyon, I., von
Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R.,
Vishwanathan, S. V. N., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems 30:
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
324