
agents. In CAV (2), volume 13372 of Lecture Notes
in Computer Science, pages 430–443. Springer.
Gross, D., Jansen, N., Junges, S., and P
´
erez, G. A. (2022).
COOL-MC: A comprehensive tool for reinforcement
learning and model checking. In SETTA, volume
13649 of Lecture Notes in Computer Science, pages
41–49. Springer.
Gross, D. and Spieker, H. (2024a). Enhancing rl safety with
counterfactual llm reasoning. In ICTSS 2024, 36th In-
ternational Conference on Testing Software and Sys-
tems.
Gross, D. and Spieker, H. (2024b). Safety-oriented prun-
ing and interpretation of reinforcement learning poli-
cies. In Proceedings of the 32nd European Symposium
on Artificial Neural Networks, Computational Intelli-
gence and Machine Learning (ESANN 2024).
Hahn, E. M., Perez, M., Schewe, S., Somenzi, F., Trivedi,
A., and Wojtczak, D. (2019). Omega-regular objec-
tives in model-free reinforcement learning. In TACAS
(1), volume 11427 of LNCS, pages 395–412. Springer.
Hansson, H. and Jonsson, B. (1994). A logic for reasoning
about time and reliability. Formal Aspects Comput.,
6(5):512–535.
Hasanbeig, M., Kroening, D., and Abate, A. (2020). Deep
reinforcement learning with temporal logics. In FOR-
MATS, volume 12288 of LNCS.
Hensel, C., Junges, S., Katoen, J., Quatmann, T., and Volk,
M. (2022). The probabilistic model checker Storm.
Int. J. Softw. Tools Technol. Transf., 24(4):589–610.
Hoffman, R. R., Mueller, S. T., Klein, G., and Litman, J.
(2018). Metrics for explainable AI: challenges and
prospects. CoRR, abs/1812.04608.
Hoffman, R. R., Mueller, S. T., Klein, G., and Litman,
J. (2023). Measures for explainable AI: explanation
goodness, user satisfaction, mental models, curiosity,
trust, and human-ai performance. Frontiers Comput.
Sci., 5.
Horta, V. A. C. and Mileo, A. (2019). Towards explain-
ing deep neural networks through graph analysis. In
DEXA Workshops, volume 1062 of Communications
in Computer and Information Science, pages 155–
165. Springer.
Horta, V. A. C. and Mileo, A. (2021). Generating local tex-
tual explanations for cnns: A semantic approach based
on knowledge graphs. In AI*IA, volume 13196 of
Lecture Notes in Computer Science, pages 532–549.
Springer.
Horta, V. A. C., Sobczyk, R., Stol, M. C., and Mileo,
A. (2023). Semantic interpretability of convolutional
neural networks by taxonomy extraction. In NeSy,
volume 3432 of CEUR Workshop Proceedings, pages
118–127. CEUR-WS.org.
Horta, V. A. C., Tiddi, I., Little, S., and Mileo, A.
(2021). Extracting knowledge from deep neural net-
works through graph analysis. Future Gener. Comput.
Syst., 120:109–118.
Huang, S. H., Bhatia, K., Abbeel, P., and Dragan, A. D.
(2018). Establishing appropriate trust via critical
states. In 2018 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pages 3929–
3936. IEEE.
Ji, Z., Liu, G., Xu, W., Yao, B., Liu, X., and Zhou, Z.
(2024). Deep reinforcement learning on variable stiff-
ness compliant control for programming-free robotic
assembly in smart manufacturing. Int. J. Prod. Res.,
62(19):7073–7095.
Jin, P., Wang, Y., and Zhang, M. (2022). Efficient LTL
model checking of deep reinforcement learning sys-
tems using policy extraction. In SEKE, pages 357–
362. KSI Research Inc.
Kazak, Y., Barrett, C. W., Katz, G., and Schapira, M.
(2019). Verifying deep-rl-driven systems. In Ne-
tAI@SIGCOMM, pages 83–89. ACM.
Liu, L., Yang, J., and Yan, B. (2024). A dynamic mission
abort policy for transportation systems with stochastic
dependence by deep reinforcement learning. Reliab.
Eng. Syst. Saf., 241:109682.
Miao, C., Zeng, Z., Wu, Q., Yu, H., and Leung, C. (2018).
Humanized artificial intelligence: What, why and
how. International Journal of Information Technol-
ogy, 24(2).
Milani, S., Topin, N., Veloso, M., and Fang, F. (2024). Ex-
plainable reinforcement learning: A survey and com-
parative review. ACM Comput. Surv., 56(7):168:1–
168:36.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. A.
(2013). Playing atari with deep reinforcement learn-
ing. CoRR, abs/1312.5602.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller,
M. A., Fidjeland, A., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Ku-
maran, D., Wierstra, D., Legg, S., and Hassabis, D.
(2015). Human-level control through deep reinforce-
ment learning. Nat., 518(7540):529–533.
Page, L. (1999). The pagerank citation ranking: Bringing
order to the web. Technical report, Technical Report.
PRISM (2023). PRISM Manual. www.prismmodelchecker.
org. Accessed: 03/14/2024.
Schilling, C., Lukina, A., Demirovic, E., and Larsen, K. G.
(2023). Safety verification of decision-tree policies in
continuous time. In NeurIPS.
Selani, D. and Tiddi, I. (2021). Knowledge extraction from
auto-encoders on anomaly detection tasks using co-
activation graphs. In K-CAP, pages 65–71. ACM.
Sieusahai, A. and Guzdial, M. (2021). Explaining deep
reinforcement learning agents in the atari domain
through a surrogate model. In AIIDE, pages 82–90.
AAAI Press.
Strehl, A. L., Diuk, C., and Littman, M. L. (2007). Efficient
structure learning in factored-state mdps. In AAAI,
pages 645–650. AAAI Press.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn-
ing: An introduction. MIT press.
Termine, A., Primiero, G., and D’Asaro, F. A. (2021).
Modelling accuracy and trustworthiness of explaining
agents. In LORI, volume 13039 of Lecture Notes in
Computer Science, pages 232–245. Springer.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
620