
ACKNOWLEDGEMENTS
This research was partially supported by the Ger-
man Federal Ministry for Economic Affairs and
Climate Action (BMWK) under the funded project
SENSIBLE-KI (grant number 01MT21005B).
DISCLOSURE OF INTERESTS
This research was funded by Bundesdruckerei GmbH.
At the time of publication, authors H. Graupner and
M. Y. Abkenar are employed by Bundesdruckerei.
REFERENCES
Agarwal, S., Farid, H., El-Gaaly, T., and Lim, S.-N. (2020).
Detecting deep-fake videos from appearance and be-
havior. In 2020 IEEE international workshop on in-
formation forensics and security, pages 1–6. IEEE.
Buolamwini, J. and Gebru, T. (2018). Gender shades: In-
tersectional accuracy disparities in commercial gender
classification. In Conference on fairness, accountabil-
ity and transparency, pages 77–91. PMLR.
Chaos Computer Club (2022). Chaos Computer Club hacks
Video-Ident. https://www.ccc.de/en/updates/2022/c
haos-computer-club-hackt-video-ident. last accessed
2024/06/27.
CNN (2024). Finance worker pays out $25 million after
video call with deepfake ’chief financial officer’. http
s://edition.cnn.com/2024/02/04/asia/deepfake-cfo-s
cam-hong-kong-intl-hnk/index.html. last accessed
2024/06/27.
Cozzolino, D., R
¨
ossler, A., Thies, J., Nießner, M., and Ver-
doliva, L. (2021). Id-reveal: Identity-aware deepfake
video detection. In Proceedings of the IEEE/CVF
international conference on computer vision, pages
15108–15117.
Deutsche Post (2024). How does the identity check by video
chat work? https://www.deutschepost.de/en/p/posti
dent/privatkunden/identifikation-per-videochat.html.
last accessed 2024/06/27.
Europol (2023). Franco-israeli gang behind eur 38 million
ceo fraud busted. https://www.europol.europa.eu/me
dia-press/newsroom/news/franco-israeli-gang-beh
ind-eur-38-million-ceo-fraud-busted. last accessed
2024/06/27.
Eurostat (2023). Online meetings and remote access to en-
terprise resources - statistics. https://ec.europa.eu/eur
ostat/statistics-explained/index.php?title=Online mee
tings and remote access to enterprise resources - s
tatistics. last accessed 2024/06/27.
Gazepoint (2024). GP3 HD Eye Tracker 150Hz. https:
//www.gazept.com/product/gp3hd. last accessed
2024/06/27.
Github (2024a). Deepfacelive. https://github.com/iperov/
DeepFaceLive. last accessed 2024/06/27.
Github (2024b). OpenVidu. https://github.com/OpenVidu/
openvidu. last accessed 2024/06/27.
Grand View Research (2022). Eye tracking market size,
share & trends analysis report. https://www.grandvie
wresearch.com/industry-analysis/eye-tracking-marke
t. last accessed 2024/06/27.
Graupner, H., Schwetlick, L., Engbert, R., and Meinel, C.
(2023). Unconventional biometrics: Exploring the
feasibility of a cognitive trait based on visual self-
recognition. In 2023 IEEE International Joint Con-
ference on Biometrics, pages 1–10. IEEE.
Hasan, H. R. and Salah, K. (2019). Combating deepfake
videos using blockchain and smart contracts. IEEE
Access, 7:41596–41606.
Hernandez-Ortega, J., Fierrez, J., Morales, A., and Galbally,
J. (2023). Introduction to presentation attack detection
in face biometrics and recent advances. Handbook of
Biometric Anti-Spoofing: Presentation Attack Detec-
tion and Vulnerability Assessment, pages 203–230.
Hess, E. H. and Polt, J. M. (1960). Pupil size as re-
lated to interest value of visual stimuli. Science,
132(3423):349–350.
Iloka, B. C. and Anukwe, G. I. (2020). Review of eye-
tracking: A neuromarketing technique. Neuroscience
Research Notes, 3(4):29–34.
Intel Corporation (2022). Intel introduces real-time deep-
fake detector. https://www.intel.com/content/www/us
/en/newsroom/news/intel-introduces-real-time-deepf
ake-detector.html. last accessed 2024/06/27.
Just, M. A. and Carpenter, P. A. (1980). A theory of reading:
from eye fixations to comprehension. Psychological
review, 87(4):329.
Martinez-Conde, S., Macknik, S. L., and Hubel, D. H.
(2004). The role of fixational eye movements in visual
perception. Nature reviews neuroscience, 5(3):229–
240.
OBS Project (2024). Obs studio. https://obsproject.com.
last accessed 2024/06/27.
Rana, M. S., Nobi, M. N., Murali, B., and Sung, A. H.
(2022). Deepfake detection: A systematic literature
review. IEEE access, 10:25494–25513.
Rana, M. S. and Sung, A. H. (2020). Deepfakestack:
A deep ensemble-based learning technique for deep-
fake detection. In 2020 7th IEEE International Con-
ference on Cyber Security and Cloud Computing
(CSCloud)/2020 6th IEEE International Conference
on Edge Computing and Scalable Cloud (EdgeCom),
pages 70–75. IEEE.
Schwetlick, L., Engbert, R., and Graupner, H. (2023a). Data
Set: Face- and Self-Recognition Effects on Pupil Size
and Microsaccade Rate. Open Science Framework.
Schwetlick, L., Graupner, H., Dimigen, O., and Engbert,
R. (2023b). Self-recognition generates characteristic
responses in pupil dynamics and microsaccade rate.
arXiv.
Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A.,
and Ortega-Garcia, J. (2020). Deepfakes and beyond:
A survey of face manipulation and fake detection. In-
formation Fusion, 64:131–148.
Behavior-Based Deepfake Detection: Leveraging Cognitive Response to Visual Face Perception
971