monitoring system data. Am J Physiol Regul Integr
Comp Physiol 307: R179 –R183.
Chen, J.-L.; Shen, H.-S.; Peng, S.-Y.; Wang, H.-M. (2022).
Reduced System Complexity of Heart Rate Dynamics
in Patients with Hyperthyroidism: A Multiscale
Entropy Analysis. Entropy, 24, 258.
Chen, X. et al. (2019). Analyzing Complexity and Fractality
of Glucose Dynamics in a Pregnant Woman with Type
2 Diabetes under Treatment. International journal of
biological sciences. vol. 15,11 2373-2380.
Chu, Y. J., Chang, C. F., Weng, W. C., Fan, P. C., Shieh, J.
S., & Lee, W. T. (2021). Electroencephalography
complexity in infantile spasms and its association with
treatment response. Clinical neurophysiology: official
journal of the International Federation of Clinical
Neurophysiology, 132(2), 480–486.
Costa, M., Henriques, T., Munshi, M. N., Segal, A. R., &
Goldberger, A. L. (2014). Dynamical glucometry: use
of multiscale entropy analysis in diabetes. Chaos
(Woodbury, N.Y.), 24(3), 033139.
Costa, M., Goldberger, A. L., Peng, C. K. (2002).
Multiscale entropy analysis of complex physiologic
time series. Physical review letters, 89(6), 068102.
Crenier, L. et al. (2016). Glucose Complexity Estimates
Insulin Resistance in Either Nondiabetic Individuals or
in Type 1 Diabetes. The Journal of clinical
endocrinology and metabolism vol. 101,4: 1490-7.
Cuesta-Frau, D. et al. (2018). Characterization of Artifact
Influence on the Classification of Glucose Time Series
Using Sample Entropy Statistics. Entropy 20, 871.
Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J.
M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody,
G. B., Peng, C. K., & Stanley, H. E. (2000).
PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex
physiologic signals. Circulation, 101(23), E215–E220.
International Diabetes Federation. (2021). IDF Diabetes
Atlas, 10th edn. Brussels, Belgium: International
Diabetes Federation.
Kahn, S. E., Hull, R. L., Utzschneider, K. M. (2006).
Mechanisms linking obesity to insulin resistance and
type 2 diabetes. Nature 444, 840–846.
Kohnert, K-D. et al. (2018). Applications of Variability
Analysis Techniques for Continuous Glucose
Monitoring Derived Time Series in Diabetic Patients.
Frontiers in physiology vol. 9 1257.
Liang Z. (2022). Mining associations between glycemic
variability in awake-time and in-sleep among non-
diabetic adults. Frontiers in medical technology, 4,
1026830. https://doi.org/10.3389/fmedt.2022.1026830
Liang, Z. (2023). Novel method combining multiscale
attention entropy of overnight blood oxygen level and
machine learning for easy sleep apnea screening.
Digital Health. 9. 1-19. 10.1177/20552076231211550.
Lytrivi M, Crenier L. (2014). Glucose variability outcome
for type 1 diabetic patients switching to CSII: improved
complexity patterns beyond glucose dispersion
reduction. European Association for the Study of
Diabetes (EASD) 50th Ann Meeting
. Abstract, 1004.
Marling, C., Bunescu, R. (2020). The OhioT1DM Dataset
for Blood Glucose Level Prediction: Update 2020.
CEUR workshop proceedings, 2675, 71–74.
Nam Nguyen, Q.D., Liu, A.-B. & Lin, C.-W. (2021).
Development of a Neurodegenerative Disease Gait
Classification Algorithm Using Multiscale Sample
Entropy and Machine Learning Classifiers. Entropy, 22,
1340.
Nawaz S., Saleem M., Kusmartsev FV., Anjum DH. (2024).
Major Role of Multiscale Entropy Evolution in
Complex Systems and Data Science Entropy 26, no. 4:
330. https://doi.org/10.3390/e26040330
Pincus S. M. (1991). Approximate entropy as a measure of
system complexity. Proceedings of the National
Academy of Sciences of the United States of
America, 88(6), 2297–2301.
Rice, M. J., Coursin, D. B. (2012). Continuous
measurement of glucose: facts and challenges.
Anesthesiology, 116(1), 199–204.
Rostaghi, M. & Azami, H. (2016). Dispersion Entropy: A
Measure for Time Series Analysis. IEEE Signal
Processing Letters. 23. 1-1.
Sabeti, M. (2009). Entropy and complexity measures for
EEG signal classification of schizophrenic and control
participants. Artificial Intelligence in Medicine. 47 (3):
263–274.
Yang, J., Choudhary, G., Rahardja, S. (2020). Classification
of Interbeat Interval Time-Series Using Attention
Entropy. IEEE Transactions on Affective Computing. 1.
10.1109/TAFFC.2020.3031004.
Zhao, Q., Zhu, J., Shen, X., Lin, C., Zhang, Y., Liang, Y.,
Cao, B., Li, J., Liu, X., Rao, W., & Wang, C. (2023).
Chinese diabetes datasets for data-driven machine
learning. Scientific data, 10(1), 35.