Sgambato, B., Castellano, G. (2022). Performance
comparison of different classifiers applied to gesture
recognition from sEMG signals. In Bastos-Filho, T. F.,
de Oliveira Caldeira, E. M., Frizera-Neto, A. (Eds.),
XXVII Brazilian Congress on Biomedical Engineering.
CBEB 2020. IFMBE Proceedings, Vol. 83. Springer,
Cham.
Salerno, A., Barraud, S. (2024). Evaluation and
implementation of High-Dimensionnal Computing for
gesture recognition using sEMG signals. Proceedings
of the 2024 International Conference on Control,
Automation and Diagnosis (ICCAD)
Lobov, S., Krilova, N., Kastalskiy, I., Kazantsev, V.,
Makarov, V. A. (2018). Latent factors limiting the
performance of sEMG-interfaces. Sensors, 18(4), 1122.
Atzori, M., Gijsberts, A., Castellini, C., et al. (2014).
Electromyography data for non-invasive naturally-
controlled robotic hand prostheses. Scientific Data, 1,
140053
Atzori, M., et al. (2012). Building the Ninapro database: A
resource for the biorobotics community. Proceedings of
the 2012 4th IEEE RAS & EMBS International
Conference on Biomedical Robotics and
Biomechatronics (BioRob), Rome, Italy, pp. 1258-
1265.
Pizzolato, S., Tagliapietra, L., Cognolato, M., Reggiani, M.,
Müller, H., et al. (2017). Comparison of six
electromyography acquisition setups on hand
movement classification tasks. PLOS ONE, 12(10),
e0186132.
Wan, Y., Han, Z., Zhong, J., Chen, G. (2018). Pattern
recognition and bionic manipulator driving by surface
electromyography signals using convolutional neural
network. International Journal of Advanced Robotic
Systems, 15(5).
Scheme, E., Englehart, K. (2014). On the robustness of
EMG features for pattern recognition based myoelectric
control: A multi-dataset comparison. Proceedings of
the 2014 36th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society,
Chicago, IL, USA, pp. 650-653.
Kanerva, P. (2009). Hyperdimensional Computing: An
Introduction to Computing in Distributed
Representation with High-Dimensional Random
Vectors. Cogn Comput 1, 139–159.
Widdows, D., Cohen, T. (2015). Reasoning with vectors: A
continuous model for fast robust inference. Logic
Journal of the IGPL, 23(2), 141-173.
Rahimi, A., et al. (2017). High-dimensional computing as a
nanoscalable paradigm. IEEE Transactions on Circuits
and Systems I: Regular Papers, 64(9), 2508-2521.
Chen H., Najafi, M. H., Sadredini, E., Imani, M. (2022).
Full Stack Parallel Online Hyperdimensional
Regression on FPGA. Proceedings of the 2022 IEEE
40th International Conference on Computer Design
(ICCD), Olympic Valley, CA, USA, 2022, pp. 517-524
Benatti, S., et al. (2017). A sub-10mW real-time
implementation for EMG hand gesture recognition
based on a multi-core biomedical SoC. Proceedings of
the 2017 7th IEEE International Workshop on
Advances in Sensors and Interfaces (IWASI), Vieste,
Italy, pp. 139-144.
Karunaratne G., Rahimi, A., L. Gallo, M., Cherubini, G.,
Sebastian A. (2021). Real-time Language Recognition
using Hyperdimensional Computing on Phase-change
Memory Array," IEEE 3rd International Conference on
Artificial Intelligence Circuits and Systems (AICAS),
Washington DC, DC, USA, 2021, pp. 1-1
Li, H., et al. (2016). Hyperdimensional computing with 3D
VRRAM in-memory kernels: Device-architecture co-
design for energy-efficient, error-resilient language
recognition. Proceedings of the 2016 IEEE
International Electron Devices Meeting (IEDM), San
Francisco, CA, USA, pp. 16.1.1-16.1.4.
Karunaratne, G., Le Gallo, M., Cherubini, G., Benini, L.,
Rahimi, A., Sebastian, A. (2020). In-memory
hyperdimensional computing. arXiv preprint,
1906.01548.
Abhijith, M., Shekhar, G. (2019). Language classification
technique using in-memory high dimensional
computing (HDC). Proceedings of the 2019 2nd
International Conference on Intelligent Computing,
Instrumentation and Control Technologies (ICICICT),
Kannur, India, pp. 293-298.
APPENDIX
Master DB: Heatmap showing the accuracy of our HDC
model for different HV dimensions (DIM) and NGRAM.
Pattern DB: Heatmap showing the accuracy of our HDC
model for different HV dimensions (DIM) and NGRAM.