
of DgPg and to use transformer models in a bigger
variety of clinical use cases. In addition, as halluci-
nation is a research priority for language models, we
want to also study the issue of hallucination as it’s ap-
plicable to DgPg transformer models too.
REFERENCES
Abr
`
amoff, M. D., Lavin, P. T., Birch, M., Shah, N., and
Folk, J. C. (2018). Pivotal trial of an autonomous
ai-based diagnostic system for detection of diabetic
retinopathy in primary care offices. NPJ digital
medicine, 1(1):39.
Bai, T. and Vucetic, S. (2019). Improving medical code
prediction from clinical text via incorporating online
knowledge sources. In The World Wide Web Confer-
ence, pages 72–82.
Brown, T. B. (2020). Language models are few-shot learn-
ers. arXiv preprint arXiv:2005.14165.
Chanda, A. K., Bai, T., Yang, Z., and Vucetic, S.
(2022). Improving medical term embeddings using
umls metathesaurus. BMC Medical Informatics and
Decision Making, 22(1):114.
CMS (2024). ICD-10-CM Official Guidelines for Cod-
ing and Reporting FY 2025. United States CMS
https://www.cms.gov/medicare/coding-billing/icd-10-
codes.
Devlin, J. (2018). Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805.
Grassberger, P. (2012). Randomness, information, and com-
plexity. arXiv preprint arXiv:1208.3459.
Henry, K. E., Hager, D. N., Pronovost, P. J., and Saria,
S. (2015). A targeted real-time early warning score
(trewscore) for septic shock. Science translational
medicine, 7(299):299ra122–299ra122.
Hsu, C.-C., Karnwal, S., Mullainathan, S., Obermeyer,
Z., and Tan, C. (2020). Characterizing the value
of information in medical notes. arXiv preprint
arXiv:2010.03574.
Hu, S., Teng, F., Huang, L., Yan, J., and Zhang, H. (2021).
An explainable cnn approach for medical codes pre-
diction from clinical text. BMC Medical Informatics
and Decision Making, 21:1–12.
Johnson, A. E., Bulgarelli, L., Shen, L., Gayles, A., Sham-
mout, A., Horng, S., Pollard, T. J., Hao, S., Moody,
B., Gow, B., et al. (2023). Mimic-iv, a freely acces-
sible electronic health record dataset. Scientific data,
10(1):1.
Kim, B.-H. and Ganapathi, V. (2021). Read, attend, and
code: Pushing the limits of medical codes prediction
from clinical notes by machines. In Machine Learning
for Healthcare Conference, pages 196–208. PMLR.
Koleck, T. A., Tatonetti, N. P., Bakken, S., Mitha, S., Hen-
derson, M. M., George, M., Miaskowski, C., Smal-
done, A., and Topaz, M. (2021). Identifying symptom
information in clinical notes using natural language
processing. Nursing research, 70(3):173–183.
Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., and Ki-
tai, T. (2017). Artificial intelligence in precision car-
diovascular medicine. Journal of the American Col-
lege of Cardiology, 69(21):2657–2664.
Malhotra, K., Hobson, T. C., Valkova, S., Pullum, L. L., and
Ramanathan, A. (2015). Sequential pattern mining of
electronic healthcare reimbursement claims: Experi-
ences and challenges in uncovering how patients are
treated by physicians. In 2015 IEEE International
Conference on Big Data (Big Data), pages 2670–
2679. IEEE.
Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., and
Eisenstein, J. (2018). Explainable prediction of
medical codes from clinical text. arXiv preprint
arXiv:1802.05695.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. (2019). Language models are un-
supervised multitask learners. OpenAI blog, 1(8):9.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2020).
Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning
research, 21(140):1–67.
Raji, M., Duggan, J., DeCotes, B., Huang, J., and Van-
der Zanden, B. (2018). Modeling and visualizing stu-
dent flow. IEEE Transactions on Big Data, 7(3):510–
523.
US CDC NCHS (2010). National Hospital Discharge Sur-
vey (NHDS). US Department of Health and Human
Services, Centers for Disease Control.
US CDC NCHS (2020). National hospital care survey
(NHCS). CDC Stacks.
Vaswani, A. (2017). Attention is all you need. Advances in
Neural Information Processing Systems.
Warner, B., Chaffin, A., Clavi
´
e, B., Weller, O., Hallstr
¨
om,
O., Taghadouini, S., Gallagher, A., Biswas, R., Lad-
hak, F., Aarsen, T., et al. (2024). Smarter, better,
faster, longer: A modern bidirectional encoder for
fast, memory efficient, and long context finetuning
and inference. arXiv preprint arXiv:2412.13663.
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
732