
REFERENCES
Abdel-Nasser, M. and Mahmoud, K. (2019). Accurate pho-
tovoltaic power forecasting models using deep LSTM-
RNN. Neural Comput. Appl., 31(7):2727–2740.
Benmouiza, K. and Cheknane, A. (2016). Small-scale so-
lar radiation forecasting using arma and nonlinear au-
toregressive neural network models. Theoretical and
Applied Climatology, 124:945–958.
Chen, H. and Chang, X. (2021). Photovoltaic power predic-
tion of lstm model based on pearson feature selection.
Energy Reports, 7:1047–1054.
Ciobanu, A., Bacanin, N., Sanders, T., and Stoean, C.
(2024). Assessing predictor influence in lstm mod-
els for enhanced solar energy forecasting. In Pro-
ceedings of the 26th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Comput-
ing (SYNASC).
Dash, D. R., Dash, P., and Bisoi, R. (2021). Short term solar
power forecasting using hybrid minimum variance ex-
panded rvfln and sine-cosine levy flight pso algorithm.
Renewable Energy, 174:513–537.
Diederik, P. K. (2014). Adam: A method for stochastic
optimization. (No Title).
Gao, J. (2024). R-squared (r2)–how much variation is ex-
plained? Research Methods in Medicine & Health
Sciences, 5(4):104–109.
Gao, M., Li, J., Hong, F., and Long, D. (2019). Day-ahead
power forecasting in a large-scale photovoltaic plant
based on weather classification using lstm. Energy,
187:115838.
Graves, A. (2012). Long short-term memory. Supervised
sequence labelling with recurrent neural networks,
pages 37–45.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Comput., 9(8):1735–1780.
Hodson, T. O. (2022). Root mean square error (rmse)
or mean absolute error (mae): When to use them or
not. Geoscientific Model Development Discussions,
2022:1–10.
Hu, Z., Gao, Y., Ji, S., Mae, M., and Imaizumi, T. (2024).
Improved multistep ahead photovoltaic power pre-
diction model based on lstm and self-attention with
weather forecast data. Applied Energy, 359:122709.
International Energy Agency (2024). World energy outlook
2024.
Kumbhar, A., Dhawale, P. G., Kumbhar, S., Patil, U., and
Magdum, P. (2021). A comprehensive review: Ma-
chine learning and its application in integrated power
system. Energy Reports, 7:5467–5474.
Lima, F. J., Martins, F. R., Pereira, E. B., Lorenz, E., and
Heinemann, D. (2016). Forecast for surface solar irra-
diance at the brazilian northeastern region using nwp
model and artificial neural networks. Renewable En-
ergy, 87:807–818.
Liu, L., Zhao, Y., Chang, D., Xie, J., Ma, Z., Sun, Q., Yin,
H., and Wennersten, R. (2018). Prediction of short-
term pv power output and uncertainty analysis. Ap-
plied energy, 228:700–711.
Markovics, D. and Mayer, M. J. (2022). Compari-
son of machine learning methods for photovoltaic
power forecasting based on numerical weather pre-
diction. Renewable and Sustainable Energy Reviews,
161:112364.
Meenal, R. and Selvakumar, A. I. (2018). Assessment of
svm, empirical and ann based solar radiation predic-
tion models with most influencing input parameters.
Renewable Energy, 121:324–343.
Mellit, A., Massi Pavan, A., Ogliari, E., Leva, S., and Lughi,
V. (2020). Advanced methods for photovoltaic out-
put power forecasting: A review. Applied Sciences,
10(2):487.
Mohammadi, K., Shamshirband, S., Anisi, M. H., Alam,
K. A., and Petkovi
´
c, D. (2015). Support vector re-
gression based prediction of global solar radiation on
a horizontal surface. Energy Conversion and Manage-
ment, 91:433–441.
Park, M. K., Lee, J. M., Kang, W. H., Choi, J. M., and Lee,
K. H. (2021). Predictive model for pv power genera-
tion using rnn (lstm). Journal of Mechanical Science
and Technology, 35(2):795–803.
Pedro, H. T. and Coimbra, C. F. (2012). Assessment of fore-
casting techniques for solar power production with no
exogenous inputs. Solar Energy, 86(7):2017–2028.
Pelland, S., Remund, J., Kleissl, J., Oozeki, T., and De Bra-
bandere, K. (2013). Photovoltaic and solar forecast-
ing: state of the art. IEA PVPS Task, 14(355):1–36.
Reikard, G. (2009). Predicting solar radiation at high reso-
lutions: A comparison of time series forecasts. Solar
energy, 83(3):342–349.
Wang, F., Lu, X., Mei, S., Su, Y., Zhen, Z., Zou, Z., Zhang,
X., Yin, R., Dui
´
c, N., Shafie-khah, M., et al. (2022).
A satellite image data based ultra-short-term solar pv
power forecasting method considering cloud informa-
tion from neighboring plant. Energy, 238:121946.
Wang, F., Xuan, Z., Zhen, Z., Li, K., Wang, T., and
Shi, M. (2020). A day-ahead pv power forecasting
method based on lstm-rnn model and time correla-
tion modification under partial daily pattern predic-
tion framework. Energy Conversion and Manage-
ment, 212:112766.
Wang, F., Zhen, Z., Wang, B., and Mi, Z. (2017). Compar-
ative study on knn and svm based weather classifica-
tion models for day ahead short term solar pv power
forecasting. Applied Sciences, 8(1):28.
Wang, H., Lei, Z., Zhang, X., Zhou, B., and Peng, J.
(2019). A review of deep learning for renewable en-
ergy forecasting. Energy Conversion and Manage-
ment, 198:111799.
Wang, L., Mao, M., Xie, J., Liao, Z., Zhang, H., and Li,
H. (2023). Accurate solar pv power prediction in-
terval method based on frequency-domain decompo-
sition and lstm model. Energy, 262:125592.
Wang, M., Peng, J., Luo, Y., Shen, Z., and Yang, H. (2021).
Comparison of different simplistic prediction models
for forecasting pv power output: assessment with ex-
perimental measurements. Energy, 224:120162.
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
740