
S., and et.al., V. A. (2022). Pennylane: Automatic
differentiation of hybrid quantum-classical computa-
tions.
Bird, J. J. and Lotfi, A. (2023). Real-time detection of ai-
generated speech for deepfake voice conversion.
Chintha, A., Thai, B., and et.al., S. (2020). Recurrent con-
volutional structures for audio spoof and video deep-
fake detection. IEEE Journal of Selected Topics in
Signal Processing, 14:1024–1037.
Dagar, D. and Vishwakarma, D. (2022). A literature review
and perspectives in deepfakes: generation, detection,
and applications. International Journal of Multimedia
Information Retrieval, 11.
Doan, T.-P., Nguyen-Vu, L., Jung, S., and Hong, K. (2023).
Bts-e: Audio deepfake detection using breathing-
talking-silence encoder. ICASSP 2023 - 2023 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5.
El
´
ıas Fern
´
andez, Combarro
´
Alvarez, S. G. C. (2023). A
Practical Guide to Quantum Machine Learning and
Quantum Optimization. Packt, 1st edition.
Hamza, A., Javed, A. R. R., Iqbal, F., Kryvinska, N., Al-
madhor, A. S., Jalil, Z., and Borghol, R. t. (2022).
Deepfake audio detection via mfcc features using ma-
chine learning. IEEE Access, 10:134018–134028.
Hennequin, R., Khlif, A., Voituret, F., and Moussallam, M.
(2020). Spleeter: a fast and efficient music source
separation tool with pre-trained models. Journal of
Open Source Software, 5(50):2154.
Khochare, J., Joshi, C., Yenarkar, B., Suratkar, S., and Kazi,
F. t. (2021). A deep learning framework for audio
deepfake detection. Arabian Journal for Science and
Engineering, 47.
Li, X., Li, K., Zheng, Y., Yan, C., Ji, X., and et.al, W. X.
(2024). Safeear: Content privacy-preserving audio
deepfake detection.
McFee, B., Raffel, C., and et.al., L. (2015). librosa: Audio
and music signal analysis in python. In Proceedings
of the 14th python in science conference, volume 8,
pages 18–25.
Mcuba, M., Singh, A., Ikuesan, R. A., and et.al., H. V.
(2023). The effect of deep learning methods on deep-
fake audio detection for digital investigation. Pro-
cedia Computer Science, 219:211–219. CENTERIS
– International Conference on ENTERprise Informa-
tion Systems / ProjMAN – International Conference
on Project MANagement / HCist – International Con-
ference on Health and Social Care Information Sys-
tems and Technologies 2022.
Mishra, B. and Samanta, A. (2022). Quantum transfer
learning approach for deepfake detection. Sparkling-
light Transactions on Artificial Intelligence and Quan-
tum Computing.
Mittal, H., Saraswat, M., Bansal, J. C., and Nagar, A.
(2020). Fake-face image classification using im-
proved quantum-inspired evolutionary-based feature
selection method. In 2020 IEEE Symposium Series on
Computational Intelligence (SSCI), pages 989–995.
Nguyen, T. T., Nguyen, Q. V. H., Nguyen, D. T., Nguyen,
D. T., Huynh-The, T., Nahavandi, S., Nguyen, T. T.,
Pham, Q.-V., and Nguyen, C. M. t. (2022). Deep
learning for deepfakes creation and detection: A sur-
vey. Computer Vision and Image Understanding,
223:103525.
Pandey, A. and Rudra, B. (2024). Deepfake audio detection
using quantum learning models. In Proceedings of
the IEEE Middle East Conference on Communications
and Networking.
Pham, L., Lam, P., Nguyen, T., Nguyen, H., and
Schindler, A. (2024). Deepfake audio detection us-
ing spectrogram-based feature and ensemble of deep
learning models.
Saha, S., Sahidullah, M., and Das, S. (2024). Exploring
green ai for audio deepfake detection.
Schuld, M. and Killoran, N. (2018). Quantum machine
learning in feature hilbert spaces. Physical review let-
ters, 122 4:040504.
Schuld, M. and Petruccione, F. (2018). Supervised Learn-
ing with Quantum Computers. Springer Publishing
Company, Incorporated, 1st edition.
The Wall Street Journal (2019). Fraudsters use ai to mimic
ceo’s voice in unusual cybercrime case. Accessed on
May 28, 2024.
Wu, H., Chen, J., Du, R., Wu, C., He, K., Shang, X., Ren,
H., and Xu, G. (2024). Clad: Robust audio deep-
fake detection against manipulation attacks with con-
trastive learning.
Wu, X., He, R., and et.al., S. (2018). A light cnn for
deep face representation with noisy labels. IEEE
Transactions on Information Forensics and Security,
13(11):2884–2896.
Yi, J., Wang, C., Tao, J., Zhang, X., Zhang, C. Y., and et.al,
Y. Z. (2023). Audio deepfake detection: A survey.
Zaman, K., Marchisio, A., Hanif, M. A., and et.al., M. S.
(2024). A survey on quantum machine learning: Cur-
rent trends, challenges, opportunities, and the road
ahead.
Zhang, Y., Wang, W., and et.al., P. Z. (2021). The effect of
silence and dual-band fusion in anti-spoofing system.
In Interspeech.
Hybrid Classical Quantum Learning Model Framework for Detection of Deepfake Audio
239